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The present work develops several methodologies for solving engineering analysis 

and design problems involving uncertainties and evidences from multiple sources. The 

influence of uncertainties on the safety/failure of the system and on the warranty costs (to 

the manufacturer) are also investigated. Both single and multiple objective optimization 

problems are considered. A methodology is developed to combine the evidences 

available from single or multiple sources in the presence (or absence) of credibility 

information of the sources using modified Dempster Shafer Theory (DST) and Fuzzy 

Theory in the design of uncertain engineering systems.  To optimally design a system, 

multiple objectives, such as to maximize the belief for the overall safety of the system, 

minimize the deflection, maximize the natural frequency and minimize the weight of an 

engineering structure under both deterministic and uncertain parameters, and subjected to 

multiple constraints are considered. We also study the various combination rules like 

Dempster’s rule, Yager’s rule, Inagaki’s extreme rule, Zhang’s center combination rule 

and Murphy’s average combination rule for combining evidences from multiple sources. 

These rules are compared and a selection procedure was developed to assist the analyst in 

selecting the most suitable combination rule to combine various evidences obtained from 

multiple sources based on the nature of evidence sets. A weighted Dempster Shafer 
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theory for interval-valued data (WDSTI) and weighted fuzzy theory for intervals (WFTI) 

were proposed for combining evidence when different credibilities are associated with 

the various sources of evidence. For solving optimization problems which cannot be 

solved using traditional gradient-based methods (such as those involving nonconvex 

functions and discontinuities), a modified Particle Swarm Optimization (PSO) algorithm 

is developed to include dynamic maximum velocity function and bounce method to solve 

both deterministic multi-objective problems and uncertain multi-objective problems 

(vertex method is used in addition to the modified PSO algorithm for uncertain 

parameters). A modified game theory approach (MGT) is coupled with the modified PSO 

algorithm to solve multi-objective optimization problems. In case of problems with 

multiple evidences, belief is calculated for a safe design (satisfying all constraints) using 

the vertex method and the modified PSO algorithm is used to solve the multi-objective 

optimization problems. The multiobjective problem related to the design of a composite 

laminate simply supported beam with center load is also considered to minimize the 

weight and maximize buckling load using modified game theory.  A comparison of 

different warranty policies for both repairable and non repairable products and an 

automobile warranty optimization problem is considered to minimize the total warranty 

cost of the automobile with a constraint on the total failure probability of the system. To 

illustrate the methodologies presented in this work, several numerical design examples 

are solved. We finally present the conclusions along with a brief discussion of the future 

scope of the research. 
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CHAPTER 1 

INTRODUCTION 

Uncertainty can be considered as the lack of adequate information to make a 

decision. Uncertainty estimation of engineering systems is sometimes referred to as the 

simulation of nondeterministic systems. The mathematical model of the system, which 

includes the influence of the environment on the system, is considered non-deterministic 

in the sense that: a) the model can produce non-unique system responses because of the 

existence of uncertainty in the input data of the model, or b) there are multiple alternative 

mathematical models of the system. The modeling of any mechanical engineering system 

with stringent performance requirements, in presence of uncertainty, becomes complex 

and, thus, makes the model impossible to represent the full scope of the uncertainty when 

the traditional probabilistic approach is used. Thus, it is important to quantify the 

uncertainties more realistically in developing the mathematical models used for the 

design and optimization of non-deterministic engineering systems.  

The present study uses Dempster-Shafer theory (DST) as the framework for 

representing uncertainty and investigates the issue of combination of evidence in the 

scope of this theory. The reasons for selecting DST can be characterized as: 

a) Relatively high degree of theoretical development in DST as compared to the other 

non-traditional theories for characterizing uncertainty. 

b) There exists relationship between DST and traditional probability theory and set 

theory.
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c) Applications of DST in engineering are on a rise in the last decade.  

d) Versatility of the DST to represent and combine different types of evidence obtained 

from multiple sources. 

In DST, evidence can be associated with multiple possible events, e.g., sets of 

events. As a result, evidence in DST can be meaningful at a higher level of abstraction 

without having to resort to assumptions about the events within the evidential set. Where 

the evidence is sufficient enough to permit the assignment of probabilities to single 

events, the Dempster-Shafer model collapses to the traditional probabilistic formulation. 

One of the most important features of Dempster-Shafer theory is that the model is 

designed to cope with varying levels of precision regarding the information and no 

further assumptions are needed to represent the information. It also allows for the direct 

representation of uncertainty of system responses where an imprecise input can be 

characterized by a set or an interval and the resulting output is a set or an interval. 

 

1.1 RESEARCH OBJECTIVES 

            The research aims to theoretically combine and analyze the evidences available 

from single or multiple sources in the presence (or absence) of credibility of the 

information sources using modify Dempster Shafer Theory (DST) and fuzzy theory in the 

design of uncertain engineering systems, to optimally design the systems with multiple 

objectives, such as to maximize the belief for the overall safety of the system, minimize 

the deflection, maximize natural frequency and minimize the weight of the systems, in 

the presence of both deterministic and uncertain parameters, and multiple constraints.  
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The original Particle Swarm Optimization (PSO) algorithm is modified to include 

dynamic maximum velocity function and bounce method for solving deterministic multi-

objective problems and the vertex method is coupled with the modified PSO algorithm 

for handling the uncertain parameters. A general automobile warranty problem, close to 

reality, is formulated and the total warranty cost is minimized with a constraint on the 

total failure probability of the system using a modified particle swarm optimization 

(PSO) when both continuous and discrete design variables are present. The following 

aspects are explored in detail in this work: 

• Various methods of combining evidences for any uncertain engineering system. 

• Comparison and selection procedure to apply a suitable combination rule for 

combining evidences based on the nature of evidence.  

• Develop a DST based approach to combine various evidences available for the 

uncertain parameters from multiple sources and/or with varying credibilities of 

the sources and to use the vertex method to calculate the belief and plausibility.  

• Develop a fuzzy-based approach to combine evidences available from multiple 

sources and/or with varying source credibilities and develop a procedure to 

calculate the margins of safety and failure of the system.  

• Develop a general optimization model, called modified particle swarm 

optimization coupled with modified game theory to solve single/multiple 

objectives with design variables as continuous, discrete or both. 

• Develop a novel procedure to optimally design uncertain engineering systems 

using modified PSO with modified game theory when uncertainty is present based 
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on single source of evidence in terms of percentage tolerance about the nominal 

value.  

• Describe a procedure to find the total warranty costs corresponding to different 

types of warranty policies for repairable and non-repairable products from 

manufacturer’s point of view and compare them to find the best warranty policy 

i.e., the minimum total warranty cost policy among both repairable and non-

repairable warranty policies. 

• Formulate an automobile warranty optimization problem, close to reality, to 

minimize the total warranty cost in which the various sub-assemblies have 

different warranty policies with different vendors. 

• Formulate a composite simply supported beam problem with uncertain 

parameters, to minimize the weight of the composite and maximize the buckling 

load with uncertainty present in geometrical, material properties and load. 

• Illustrate all the above methodologies with numeric design examples. 

 

1.2 OVERVIEW OF THE THESIS 

Following this introduction chapter, Chapter 2 presents a literature review of the 

Dempster Shafer theory, fuzzy theory, multi-objective optimization, game theory, particle 

swarm optimization, and warranty policies.  

Chapter 3 presents the basic concepts of Dempster Shafer theory, fuzzy theory, α –cut 

representation, fuzzy arithmetic, particle swarm optimization, game theory, warranty 

policies, probability and reliability in the context failure distribution, classification of 

warranty policies, one - and two-dimensional warranty policies. 
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Chapter 4 studies various combination rules like Dempster’s rule, Yager’s rule,  Inagaki’s 

extreme rule, Zhang’s center combination rule and Murphy’s average combination rule 

for combining evidences from multiple sources and several examples are presented for 

understanding the procedures, and selecting the most appropriate rule based on the nature 

of evidence sets. These rules are compared and a selection procedure was developed to 

assist the analyst in selecting the most suitable combination rule to combine various 

evidences obtained from multiple sources based on the nature of evidence sets. The safety 

analysis of a welded beam based on maximum induced shear stress is studied using on 

five different evidence sets. 

In chapter 5, the vertex method based on the α -cut concept and interval analysis is 

considered. A computation procedure to find the belief and plausibility functions is 

developed. The safety analysis of a welded beam with two and four uncertain parameters, 

when uncertain parameters are assumed to be available in the form of interval-valued 

data from multiple sources is also considered. The DST methodology to combine 

evidence when sources of evidence have different credibilities is also considered in this 

chapter. The welded beam example is considered with varying credibilities for the 

sources of evidence when combining evidence. 

Chapter 6 explores the fuzzy approach for combining evidences from multiple sources. It 

describes the procedure to compute bounds on the margin of failure and margin of safety. 

In this regard, an illustrative example of a welded beam is considered for combining 

evidences with two and four uncertain parameters by assuming both triangular and 

trapezoidal membership functions for the maximum allowable shear stress in the weld. A 

new weighted fuzzy theory for intervals was also proposed in this chapter. The welded 
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beam example is considered with varying credibilities for the sources of evidence when 

combining evidence. 

Chapter 7 starts with an introduction to the particle swarm optimization followed by a 

modified particle swarm optimization, approach for constrained optimization with both 

discrete and continuous design variables. Applications for single objection optimization 

problems are considered. The procedure to use modified PSO with modified game theory 

for multi-objective optimization is considered with different engineering applications like 

design of 2-bar and 25-bar trusses, design of I-beam and gear box.  

In chapter 8, a novel method of using modified PSO in conjunction with the vertex 

method was proposed. It begins with a description of the vertex method and followed by 

the computational aspects of the vertex method. Engineering applications like design of 

welded beam and design of 25-bar truss with different number of uncertain parameters 

are considered. Formulate and design a composite simply-supported beam for minimum 

weight and maximum buckling load capacity is also considered. 

Chapter 9 begins with a description of different warranty policies for repairable and non-

repairable products. The warranty policies start with a free replacement warranty (FRW) 

policy, followed by pro-rated warranty (PRW) policy, combined FRW/PRW policy and 

two-dimensional FRW warranty policy. This chapter compares the various warranty 

policies for both repairable and non-repairable products for different failure distributions. 

The formulation of an automobile warranty optimization problem is considered followed 

by a sensitivity analysis of the optimal design variables with respect to both total 

warranty cost and total failure probability of the system. 
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Chapter 10 is devoted to the conclusion of the current research and the last chapter 11 is 

devoted to the summarization of future scope of research. Appendix-A describes the 

various steps involved in the application of the various combination rules and are applied 

to combine evidences in the context of the robbery and automobile examples considered 

in chapter 4. Appendix-B describes the procedure to find stress using laminate theory, 

deflection and buckling load of composite beams. Appendix-C describes main Matlab 

programs used in the present research work. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 OVERVIEW  

It was observed that most of the present literature is concerned with deterministic 

optimization of engineering structures/systems for specified structural/system parameters 

including loading conditions/external effects. However, in most practical situations, the 

structural parameters and loads, for example, are uncertain. For example, the geometry 

parameters, obtained through construction, manufacturing, or machining processes are 

usually specified in terms of their nominal values and with tolerances. Many types of 

loads, such as wind, earthquake and snow loads, are not known in precise terms; only 

information about past loads is known. Material properties, such as yield strength and 

Young’s modulus, are determined through experiments; they are bound to exhibit 

variations. Thus all the parameters involved in structural design problems are uncertain. 

Thus, uncertainty plays a vital role in the investigation of various engineering problems. 

In section 2.2, a brief literature review of Dempster Shafer frame work has been 

considered. Literature review of fuzzy set theory in section 2.3, multi-objective 

optimization in section 2.4, game theory in section 2.5, particle swarm optimization in 

section 2.6 and warranty policies in section 2.7, respectively, are also considered. We 

study many new methods proposed in these areas, and are applied successfully to various 

applications. The chapter concludes with summary at the end. 
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2.2 DEMPSTER SHAFER THEORY 

Many generalized models of uncertainty have been developed to treat different 

situations; including possibility theory [6, 220] and fuzzy sets, Dempster-Shafer theory of 

evidence [54, 187], imprecise probabilities [212], convex models [18], random sets [101] 

and others. These generalized models of uncertainty have a variety of mathematical 

descriptions [35]. However, they all can typically be described as either random or fuzzy. 

If the uncertain parameters are treated as random variables, they are described by suitable 

probability distributions and the response of the structure, such as displacement, strains 

and stresses, can be computed using probability principles. On the other hand, if the 

uncertain parameters are treated as fuzzy quantities, they are described using suitable 

membership functions. For example, the statement, “This beam carries a load of 50 lb 

with a probability of 0.8” is imprecise because of the randomness in the material 

properties of the beam, whereas the statement “This beam carries a small load” is 

imprecise because of the fuzzy meaning of “small load.” Examples of imprecisely 

defined statements are “fiber content in the composite material is very high” and “the 

probability of pressure acting on the cylinder exceeding a value of 100 psi is greater than 

0.9”.   

Smets [192] showed how the transferable belief model can be used to assess and 

combine expert opinions. The transferable belief model has the advantage that it can 

handle weighted opinions and their aggregation without the introduction of any specific 

methods. 

Chang et al. [42] propose a formal methodology for integrating subjective 

inferential reasoning and geographic information systems (GIS) into a decision support 
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system for use in these problem domains. The reasoning for inferential spatial models, 

and the structure and function of a spatial modeling environment based on the Dempster-

Shafer theory of evidence are presented. 

Vasseur et al. [207] proposed an application of the perceptual organization based 

on the Dempster-Shafer theory. This method is divided into two parts which prove the 

segmentation mistakes by restoring the coherence of the segments and detects objects in 

the scene by forming groups of primitives. Then, the Dempster-Shafer theory, usually 

used in data fusion is applied, in order to obtain an optimal result between the perceptual 

organization problem and this tool. 

Inagaki [83] explores the application of the Dempster-Shafer theory in system 

reliability and safety. Inappropriate application of the Dempster- Shafer theory to safety-

control policies can degrade plant safety. This is proven in two phases: 1) A new unified 

combination rule for fusing information on plant states given by independent knowledge 

sources such as sensors or human operators is developed. 2) Combination rules can not 

be chosen in an arbitrary manner; i.e., the best choice of combination rules depends on 

whether the safety-control policy is for fault-warning or safety-preservation. 

Kohlas and Monney [112] used evidence theory to represent uncertainty in expert 

systems, especially in the domain of diagnostics. It can be applied to decision analysis 

and it gives a new perspective for statistical analysis. Among its further applications are 

image processing, project planning and scheduling and risk analysis. The computational 

problems of evidence theory are well described and even though the problem is complex, 

efficient methods are available. 
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Chen and Rao [43] introduced a new methodology, based on a modified 

Dempster-Shafer (DS) theory, for solving multicriteria design optimization problems. 

The design of a mechanism in the presence of seven design criteria and eighteen design 

variables is considered to illustrate the computational details of the approach. This work 

represents the first attempt made in the literature at applying DS theory for numerical 

engineering optimization. 

Shenoy [189] describes how Dempster-Shafer's theory of belief functions will fit 

in the framework of valuation-based systems (VBS). Since VBS serves as a framework 

for managing uncertainty in expert systems, this facilitates the use of Dempster’s belief 

functions in expert systems. 

Parikh et al. [163] used Dempster-Shafer theory in 'fusion' classifiers. They 

demonstrated the effectiveness of the approach in a case study involving the detection of 

static thermostatic valve faults in a diesel engine cooling system. 

Bloch [31] describes some key features of Dempster-Shafer evidence theory for 

data fusion in medical imaging. Examples are provided to show its ability to take into 

account a large variety of situations, which actually often occur and are not always well 

managed by classical approaches nor by previous applications of Dempster-Shafer theory 

in medical imaging. 

Data fusion techniques for ventricular suction detection in a heart assist device 

based on Bayesian, fuzzy logic and Dempster-Shafer theory were evaluated in Boston et 

al. [34]. Fusion techniques based on fuzzy logic and Dempster-Shafer theory provide a 

measure of uncertainty in the fused result. This uncertainty measure can be used in the 

control process, and it can also be used to identify faults in pump operation. 
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The key feature of the Dempster-Shafer theory as described by Laskey and Cohen 

[121] is the precision in inputs is required only to a degree justified by available 

evidence. The output belief function contains an explicit measure of the firmness of 

output probabilities. They have given an overview of belief function theory and present 

the basic methodology for application to simulation, and give a simple example of a 

simulation involving belief functions. 

Basti [15] proposed methods that are applicable to the multisensory classification 

of airborne targets using Dempster-Shafer theory. Several simulations relating to an 

airborne target classification problem were also presented. 

Jiang et al. [94] presented a multisensor multiple-attribute data association 

method based on Dempster and Shafer evidence theory. This approach was illustrated by 

simulations involving multi-sensor multiple targets in a dense clutter environment. 

The theory of Dempster-Shafer is discussed with emphasis placed on its use in the 

field of multi-sensor data fusion and data association systems by Tchamova [202]. In this 

reference, how the structure of multi-sensor integration systems influences the accuracy 

of objects identification process was discussed and also determined the dependence of the 

degree of uncertainty on the speed of receiving best evidential intervals as well as the 

impact of increasing number of sensors on the calculation time. 

Luo and Li [131] developed a new multisource information fusion scheme using 

the plausibility measure. The method avoids using Dempster's rule of combination, so as 

to overcome the intractability of Dempster-Shafer computations, allowing the theory to 

be feasible in many more applications. A simple robotic vision system with object 

recognition data from multi-sensor is presented to highlight benefits of the new method. 
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Murphy [150] discusses the Dempster-Shafer theory in terms of its utility for 

sensor fusion for autonomous mobile robots; it exploits two components of DS theory: 

the weight of conflict metric and the enlargement of the frame of discernment. 

Boston [33] describes a signal detection algorithm based on Dempster-Shafer 

theory: The detector combines evidence provided by multiple waveform features and 

explicitly considers uncertainty in the detection decision. The detector classifies 

waveforms as including a signal, not including a signal, or being uncertain, in which case 

no conclusion regarding presence or absence of a signal is drawn. 

As can be noted, this section listed few applications of Dempster Shafer theory in 

various fields of science and technology. Other applications [9, 36, 37, 183] can be found 

in literature. 

 

2.3 FUZZY SET THEORY 

When the parameters of a system contain information and features that are vague, 

qualitative and linguistic, a fuzzy approach can be used to predict the response. Various 

attempts are made to apply fuzzy set theory to solve structural optimization problems 

since there exists a vast amount of fuzzy information in both the objective and constraint 

functions for the design optimization of structures. Many papers have discussed the 

application of fuzzy set theory to structural design and in particular in structural 

optimization.  The theory of fuzzy sets was developed for a domain in which descriptions 

of activities and observations are not well defined.  

The theory was introduced by Zadeh in 1965 [222], and later applied to different practical 

systems by several researchers. Since then, fuzzy set theory has been widely developed 
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and various modifications and generalizations have also appeared in literature. Although 

the theory was recognized as a mathematical concept related to the statistics discipline, its 

applications were limited to only academic problems for many years. Only in recent 

years, its utilization was expanded to engineering arena and had attracted more attention 

in the area of mechanical design. In order to develop a suitable method for processing 

convex fuzzy input parameters, the concept of −α level discretization is followed. In 

problem solving applications, the −α level discretization is advantageous for the 

numerical processing of fuzzy information. Wood et al., [215] adopted this method for 

solving special problems in structural design. All fuzzy input parameters are discretized 

using the same sufficiently high number of −α levels ( rkk ,,2,1 ,  =α ) and thus called 

−α level optimization.  

Bonarini and Bontempi [32] described the solution of differential equations containing 

fuzzy parameters. Rao and Sawyer [168] developed the fuzzy finite element approach to 

analyze imprecisely defined systems. The authors [201] investigate the interrelationships 

of several concepts of generalized convex fuzzy sets. Dhingra and Rao [59] used non-

linear programming technique to model the vague and imprecise information in the 

problem, thus resulting fuzzy multi-objective problem using this technique. Based on the 

fuzzy set theory, a general method for fuzzy structural analysis is developed by Moller et 

al., [140] which is formulated in terms of the −α level optimization with the application 

of a modified evolution strategy. The paper describes the coupling between −α level 

optimization and the initial deterministic solution, so that, every known analysis 

algorithm for the structural analysis may be applied in fuzzy structural analysis in the 

sense of deterministic solution.  
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Biondini et al., [21] proposed a fuzzy reliability analysis of a concrete structure, where 

geometrical and mechanical properties of the structure are considered as uncertain. 

Uncertainties are modeled using a fuzzy criterion in which the model is defined through 

interval of values, bounded between suitable extremes of minimum and maximum. The 

reliability problem is formulated at the load level, with respect to several serviceability 

and ultimate limit states. For the critical interval associated to each limit state, the 

membership function of the safety factor is deduced by solving a corresponding anti-

optimization problem. The strategic planning of this solution process is governed by a 

genetic algorithm.  

Beer [17] has developed a method for uncertain structural design on the basis of 

nonlinear fuzzy structural analysis. The method is formulated in terms of α -level 

optimization combined with a modified evolution strategy. The fuzzy structural responses 

are compared with permissible values and assessed using an analog to the Shannon 

entropy and de-fuzzification algorithm [41, 56,127].  

 

2.4 MULTIOBJECTIVE OPTIMIZATION  

During the past decade the, subject of structural multi-objective optimization has 

been explored extensively. Some investigators have treated structures subject to static 

constraints, e.g., maximum stress limit or minimum deflection, while others have 

considered structures subject to dynamic constraints, e.g. natural frequency. The literature 

on multi-objective or multi-criteria decision making has grown tremendously in the last 

decade. Kuhn and Tucker [117] had first mentioned, in mathematical programming, by 
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calling the multi-objective decision making problem called the “vector maximum” 

problem. 

The weighted approach of objectives is based on the assumption that the objective 

functions are mutually independent [104]. This method is incapable of generating the 

entire set of pareto-optimal solutions for non-convex problems. This technique has the 

drawback of modeling the original problem in an inadequate manner, generating 

solutions that will require a further sensitivity analysis to become reasonably useful to the 

designer.  The two-level game theory approach presented by Rao et al., [174] overcomes 

some of the shortcomings of this weighted method but this method is computationally 

very expensive. No attempt has been made in previous works for modeling vague and 

imprecise design problem specifications, and uncertain material properties.  Rao and 

Freiheit [166], Dhingra et al., [60], Dhingra and Rao [58] studied the game theory 

approach to multi- objective optimization problems in the fuzzy environment.   

Recent advances in area of structures have resulted in the development of techniques for 

handling optimization problems with large numbers of design variables [7,168,171]. Rao 

[173] presented a method for solving fuzzy multi-objective optimization problems using 

ordinary non-linear programming techniques. For simplicity, linear relationships have 

been assumed to denote membership functions over the transition zones of response 

quantities. The procedure outlined is expected to work in situations where doubt arises 

about the exactness of permissible values, correctness of statements and judgments, and 

so on. Rao et al., [167] proposed two procedures namely the λ -formulation and α -cut 

approach for solving multi-objective optimization problems where the λ -formulation 

provides an overall compromise solution while the α -cut approach yields the design 
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information in a parametric form. Yu et al., [219] have presented three approaches by 

using different types of generalized fuzzy decision-making: intersection decision, convex 

decision and product decision in order to reflect various decision ideas and provide a 

favorable condition in the selection of the structural design scheme. They have 

emphasized that the intersection decision is the most conservative in generalized fuzzy 

decision-making in their work.  

 

2.5 GAME THEORY 

Game theory is a mathematical tool for the analysis of situations involving 

conflicting objectives. One way to describe a game is by listing the players (or 

individuals) participating in the game, and for each player, listing the alternative choices 

(called actions or strategies) available to that player. Game theory [189, 190] represents 

multi-objective optimization with multiple decision-makers, each controlling certain 

design variables [180, 209].  Players make moves (determine strategies) to maximize 

their payoffs.  These moves determine the outcome of the game, based on payoff 

functions associated with each player [196]. The payoffs to each player are typically 

determined by some naturally occurring cause and effect situation. Given certain pre-

existing conditions, the equilibrium point or final solution to a game is considered the 

value of the game and is that point at which no player desires to alter his/her position.   

One relatively broad classification of games is that of zero-sum and non-zero-sum.  A 

zero-sum game is one in which a payoff to one player directly results in a detriment of 

equal value to another player.  Zero-sum games represent highly competitive situations 
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and are rare with real world engineering problems.  Therefore, this research will consider 

only non-zero-sum games. 

Three common game distinctions are those of matrix, continuous, and differential games. 

Game Theory has emerged recently as a powerful challenger to the conventional method 

of examining economics. The first formal fundamental concept of game theory was 

developed by John Von Neumann and Oskar Morgenstern [213] in 1944. The work 

stemmed from an effort to model and solve economic problem, in which the objective is 

typically to maximize utility or profit.  The authors used discrete matrix games, now 

often associated with classical game theory, to prove the existence of optimal strategies in 

games. In the case of a two player game, it forms a matrix, where the actions of the first 

player form the rows and the actions of the second player the columns. The entries in the 

matrix are two numbers representing the utility or payoff to the first and second player 

respectively. Neumann and Morgenstern [210] introduced the strategic normal game, 

strategic extensive game, the concept of pure/mixed strategies, coalition games as well as 

the axiomatization of expected utility theory, which was so useful in the theory of 

economics under uncertainty. They employed the maximum solution concept derived 

earlier by Neumann in 1944 [210] to solve simple strategic, zero-sum normal games. 

Continuous static games also represent a single move sequence, but the objective 

functions or payoff functions are represented by continuous functions.  With differential 

games, the pay-off function, dictating a player’s best move, changes with time.  Lengthy 

sequences of decisions are knit together.  In terms of control theory, state variables 

represent the status or condition of the game, and players modify control variables, which 

are functions of the state variables.  The strategy used with differential games is 
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comparable to the scheme of a guidance mechanism [23, 84].  If all but one player is 

suppressed, in a differential game, the result is a standard optimization problem. 

Engineering design problems are best depicted as continuous static games, as described 

in [209].  In terms of engineering optimization, decision-makers allocate resources 

(assign values to design variables) to optimize an objective function.  The equilibrium 

point is the optimum. 

Game theory can be mainly divided into two broad areas: non-cooperative games and co-

operative games.  

 

2.5.1 Non-cooperative Games 

A non-cooperative game involves players that do not cooperate with each other.  

Each player sees only the result of the other players' moves.  No information concerning 

payoff or objective functions is transferred.  Each player seeks to maximize his/her own 

payoff and reacts to the actions of the previous player(s).  This is not multi-objective 

optimization in its truest sense. There are multiple decision-makers.  Consequently, 

certain design variables are associated only with certain objective functions. The results 

of the game can vary depending on which players attend to which particular objective 

functions.  
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2.5.2 Cooperative Games 

In cooperative game theory, each player agrees to exchange information 

concerning payoff or objective functions.  Each player moves ultimately to maximize 

his/her payoff, but they are willing to exchange information and alter their positions in 

order to benefit other players, as long as there is no personal detriment.  Consequently, all 

players have access to all objective functions.  One variable or set of variables is no 

longer associated with only one objective function.  This group rationality, as opposed to 

individual rationality, results in Pareto optimal solution.  An in-depth discussion of Pareto 

solutions is available in the literature [196,209,167,212]. A point is considered Pareto 

optimal if no player can move from that point without causing detriment to some other 

player. This concept results in an infinite set of solutions.  A Pareto optimal set is often 

referred to as a compromise solution set [184].   

Graphically, cooperative game theory allows players to move along objective contours 

rather than just along orthogonal directions, as in case of non-cooperative play. 

Kickert distinguishes the subtle differences between team decision theory, group decision 

theory, and cooperative game theory [105].  Team decision theory, as detailed in [139], 

involves a single team-objective function, though individuals may have access to 

different pieces information and may have independent, individual interests.  A team 

struggles to optimize the allocation of tasks or resources among the individuals.  Group 

theory is described in [210] as it applies to social behavior.  Group decision theory is 

concerned with modeling a single consequence of a group of individuals with many 

independent preferences.  Game theory concerns multiple players pursuing personal 
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gains, with different interests or objective functions.  Game theory essentially introduces 

self-interest to group theory. 

Most attention was received by the solutions of cooperative game theory when compared 

to all other game solutions. This is a result of the fact that cooperative game theory 

essentially mimics multi-objective optimization with multiple decision-makers. In a two-

objective problem, both players seek to optimize both objective functions regardless of 

association with their own utility functions.  Because all decision-makers have access to 

all objective functions, the result is independent of which decision-makers (variables) are 

associated with which objective functions.  The solution to both multi-objective 

optimization problems and to cooperative games is a Pareto optimal set. Many algorithms 

for determining a Pareto optimal set are outlined in the literature [23, 84, 209, 154].  

Some of the most popular algorithms are weighted sum (also known as scalarization or 

utility function), ε-constraint, minimax, lexicographic, global, and ratios. 

For determining a single optimal Pareto point, there are essentially two methods.  

Salukvaze presents a method that minimizes the sum of the differences between the 

values of each objective function at the optimal Pareto point and at the functions’ actual 

optimum points [184].  If one considers a space of dimension equal to the number of 

objective functions, the point defined by all of the optima of the individual objectives, is 

called a “utopia point”.  Vincent refers to the utopia point as the “single unique point in 

the cost space where every design criteria takes on its minimum [optimum] value.”  

[208]. Salukvaze uses the Pareto point that is closest (measured with the Euclidean norm) 

to the utopia point.  However, it is suggested that this method may not thoroughly solve 

the problem of determining a single optimum Pareto point, since the mathematical 
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definition of “close” can vary [154].  Rao presented a method for selecting a single Pareto 

optimal point using what he refers to as a “supercriterion”.  The product of the 

differences between each objective, evaluated at the Pareto optimal point and at the worst 

possible position for a specific objective/player, is maximized.  In the vein of game 

theory, players begin with their worst values and negotiate to improve their positions [84, 

209]. 

Concepts and solution methods that apply to game theory have been applied to actual 

engineering problems [84, 209, 169, 208, 184].  The question that arises is what type of 

engineering optimization problems or scenarios are most accurately modeled by a given 

game.  Though team members/engineers work towards a common goal, there will rarely 

exist the type of defensive play that is inherent in min-max problems. Though the min-

max (security) game is common in game theory literature, its application to engineering 

problems is minimal. 

Though direct, competitive opposition is rare, engineers with separate and partially 

conflicting objectives do not typically cooperate completely; communication is not 

constant.  Often, an engineer is the decision-maker and his/her objective function is 

unique.  There may be no explicit by defined objective function.  Therefore, it becomes 

difficult to completely share the objective function information.  Consequently, each 

engineer or designer is actually reacting to the position of another engineer(s).  In such a 

situation the Nash equilibrium point, determined through non-cooperative game theory, 

indicates the best in terms of what the set of players (engineers) can do (the optimum 

design).  Rarely, except with small, and simple systems, are all engineers familiar with all 

of the objective functions and with what is required to alter each of the design variables. 
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To improve on the Nash equilibrium point with cooperative game theory, all 

players/engineers are required to communicate all information concerning strategy and 

objective functions. If explicit objective functions or even “black box” functions, such as 

finite element analysis software, are available, then the Nash equilibrium point can be 

improved upon with a Pareto optimal set. An optimal Pareto point can then be selected 

using Rao’s method, as discussed earlier. Usually several Pareto-optima exist for a vector 

optimization problem and additional information is needed to find a specific Pareto-

optimal point. This clearly makes it possible to bring in additional considerations not 

included in the optimization model (besides the original objectives), thus, making the 

multi-objective approach a flexible technique for most design problems. Several 

numerical methods have been suggested for solving a vector optimization problem. In 

general, each method generates a different Pareto-optimal solution. 

 

2.6 PARTICLE SWARM OPTIMIZATION 

Over the last decade, the particle swarm optimization (PSO) has gained rapid 

importance as an optimization tool to facilitate the design of many engineering systems. 

The original version of PSO algorithm was introduced by Kennedy and Eberhart in 1995 

[103] for the solution of single objective optimization problems. The PSO algorithm is 

found to be suitable for non convex and continuous function optimization with 

continuous design variables. Many practical engineering applications involve both 

continuous and discrete design variables. In most of the cases, the discrete design 

variables are transformed into continuous ones by several approaches [70, 5, 40, 119]. 
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There are methods that treat discrete design variables as constraints and use a penalty 

function approach to augment the objective function to include discrete variable 

conditions [109, 108]. Thus the problem is reduced to an unconstrained optimization 

problem which can be solved using a continuous variable based solution method. Unlike 

these methods, this work uses an approach termed the closest discrete approach [206] 

(CDA) to handle discrete design variables.  In the real world, a large number of 

engineering systems involve a number of competing quantitative measures that define the 

quality of a design solution. For instance, in the design of an automobile, a firm may wish 

to minimize its production cost, maximize its fuel efficiency, maximize its crash 

resistance and/or maximize its reliability. These objectives cannot be met by a single 

solution; so, by adjusting the various design parameters, the firm may like to find all 

available possible combinations of these objectives, given a set of constraints (for 

instance legal requirements and dimensional limits of the product).  A true Pareto front, 

defined as the optimal trade-off possibilities between objectives, is represented by a curve 

(for two objectives) or surface (more than two objectives). A feasible solution lying on 

this true Pareto front cannot improve any objective without worsening at least one of the 

others while satisfying all the given constraints of the model; no solutions exist beyond 

the true Pareto front. The goal of any multiobjective algorithm is to find this Pareto front 

that indicates the non-dominated solutions. These types of problems are effectively 

solved by various multiobjective evolutionary search algorithms as these algorithms 

maintain a population of solutions which are capable of exploring several parts of the 

Pareto front simultaneously for any complex problem. Similar characteristics are also 

associated with the PSO and several results are reported in the literature comparing PSO 
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with evolutionary algorithm techniques in the case of single objective problems. It is 

obvious that the next stage is the application of PSO to multiobjective problems. Some 

researchers have published studies on multiobjective PSO starting from 2002 [206, 88, 

178]. The PSO algorithm can be viewed as a distributed behavioral algorithm which can 

perform a multi-dimensional search to find the solution of various optimization problems 

[88, 80, 165, 206]. 

 

2.7 WARRANTY POLICIES 

The literature on warranty models and policies is very broad since it involves 

many interdisciplinary areas of application. Warranty models and policies have been 

analyzed by many economists, engineers, statisticians, management consultants, 

mathematical modelers, marketing professionals and people from many other disciplines. 

Each discipline has investigated different aspects of the warranty. For example, the 

marketing literature has considered warranties as a marketing tool and analyzed their 

effects on product sales and the impact of warranties on customers’ perceptions of risk 

and the economics literature on product warranties focuses on social welfare and 

regulatory issues [139]. The approach used for warranty modeling in this research 

pertains to development of analytical models and strategies that minimize the expected 

cost of warranty servicing (to the manufacturer) and we shall confine the attention only to 

those aspects. 

For many years, we have seen warranty policies in existence for both products and 

services. Often, product warranties are perceived as signals of product quality by 

customers and the strategies made by the manufacturer to service the product greatly 
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influences this perception [139]. As an important component of post-sale support service, 

warranty offered by a manufacturer or a dealer establishes liability among the two parties 

(manufacturer and buyer) in the event when product fails. It is a contractual obligation in 

connection with the sale of a product [146]. Warranty cost is important to manufacturers 

for several reasons. First, the warranty cost is included into the price of the product and 

thus necessary for determining pricing policy. Second, the knowledge of warranty cost 

helps sellers compare different policies and select the best policy in some sense. Finally, 

it increases seller’s ability to manage future cash flows. From customers’ point of view, 

the knowledge of warranty cost may help customers to decide between products with 

different warranties, and whether to buy an extended warranty when such an option 

exists. However, in most cases, customers cannot get access to this information. The 

warranty cost estimation is a very challenging task since product failures occur randomly, 

and operating conditions and customers’ usage greatly vary. The literature in this area can 

be grouped as one and two-dimensional warranty cost modeling. 

 

2.7.1 One-dimensional warranty policies 

One-dimensional policies are characterized by a single variable such as age or 

usage of the product since purchase. While 1-D policies have been researched over many 

years, the majority of research in 1-D models have been focused on estimation of the 

expected cost per product during the warranty period and the expected total cost during 

the product life cycle from both customers’ and sellers’ perspective. The major drawback 

in 1-D warranty modeling is that analytical models often involve cumbersome 

expressions in terms of convolutions of integrals, transforms, and limited to very few 
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probability distribution functions. Products which usually characterize the terms warranty 

in terms of one variable are high mix and high volume manufactured goods. 

Blischke and Scheuer [30] analyzed Free Replacement Warranty (FRW) and Pro-Rated 

Warranty (PRW) policies from the view point of both customer and manufacturer. 

Customers have the choice of buying the product with or without a warranty. The author 

[30] calculated the cost (profit) to the customer (seller) at which the customer (seller) 

would be indifferent between buying (selling) the product with or without a warranty. 

Balachandran et. al. [11] developed a Markov model. They assumed that the product 

consists of three independent components whose failure times are governed by 

exponential distribution. The seller repairs a component on the first two failures and 

replaces the component on its third failure during the warranty period. According to this 

policy, they estimated the expected warranty cost. 

Anderson [4] developed a non-specific profit maximization model framework for 

optimally specifying the product price and warranty period. Glickman and Berger [72] 

considerably extend the work [4] by considering a displaced log-linear demand function 

of product price and warranty period, to maximize manufacturer’s profit function 

embedded with demand function to yield optimal product price and warranty period. 

Thomas [201] developed a combination warranty policy for non-repairable products. The 

warranty period was divided into two intervals. Products failing in the interval [0, W1] are 

replaced with a new one, and failures in the interval [W1, W2] result in prorated rebates. 

He derived a unit warranty cost formulation for different failure distributions. He also 

developed a procedure to minimize the expected warranty cost to find the optimum 

warranty period. 
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Blischke and Scheuer [29] applied renewal theoretic arguments to obtain the expected 

number of replacements during the product life cycle. They studied several failure time 

distributions, including exponential, uniform, gamma, and Weibull, and due to the 

inherent difficulties in analytical modeling, they developed a simulation program to 

evaluate the effect of different failure time distributions. 

Nguyen and Murthy [156] developed a general model for repairable products sold with 

FRW. It was assumed that the failure time distribution is arbitrary, and the repair cost 

depends on the number of repairs carried out. They estimated the expected total warranty 

cost and its confidence interval for a fixed lot size, and the expected number of units 

returned for repair and expected warranty cost incurred in any time interval during the 

product life cycle when sales occur continuously. 

Mamer [133,134] examined the expected warranty cost for a product sold with a free 

replacement warranty (FRW) policy and a pro-rated warranty (PRW) policy. In the first 

paper, he derived an expression for the expected total warranty cost assuming that the 

product would be replaced by an identical one until the end of the life cycle. He also 

found the average costs for three cases: no warranty, PRW and FRW. In the second 

paper, he assumed that some customers might switch to another seller because of their 

bad experience with the first purchase, i. e., there is a certain probability that the 

customer will not replace the product from the same manufacturer if it fails after the 

warranty period. He assumed that damage occurs according to Poisson process, and 

calculated the expected discounted profit to the manufacturer and the expected 

discounted cost to customers for FRW and PRW policies. He also introduced a random 
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damage process into the model so that a product will fail either because it wears out or 

because it has been damaged accidentally.  

Ritchken and Tapiero [179] investigated the optimal age replacement policies for non-

repairable products sold with PRW from the customers’ point of view. In the age 

replacement policy, a product is replaced upon its failure or at a fixed time interval 

whichever comes first. This type of policy is often used when the product has an 

increasing failure rate with age. They minimize the expected average cost to calculate the 

optimal replacement period after the expiration of warranty. 

Balcer and Sahin [12] found the mean and variance of the total replacement cost for a 

PRW and FRW during the product life cycle. They also investigated the case where the 

failure distribution depends continuously on time. 

Nguyen and Murthy [156] considered a special case where the product is replaced with a 

new one if it fails in the interval [0, W-t] and with a repaired one if it fails in the interval 

[W-t, W]. Further, they assumed that a failed unit is repaired and added to the collection 

of repaired products only if it was not subjected to repair earlier and its age at failure is 

less than or equal to α. They minimize the expected warranty cost to find the optimal 

replacement interval. 

Frees [68] considered approximation techniques to estimate renewal density function for 

obtaining expected warranty costs. Frees and Nam [69] investigated a combination 

warranty in which manufacturer replaced all product failures in (0,W) free of cost to the 

customer, and all failures in the region (W;W + T) the customer buys new product paying 

pro-rated cost. They derived the expected costs for warranty servicing using straight line 

approximation technique during the product lifetime. 
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Sahin and Polatoglu [182] study two types of replacement policies following the 

expiration of warranty for products with Increasing Failure Rate (IFR) distribution. A 

type-1 policy involves minimal repair for a fixed duration of time followed by a 

replacement, and in a type-2 policy, there is replacement of the product by the user after 

the first failure following the minimal repair period. They considered renewing and non-

renewing options of the above policy and obtain the long run mean cost to the customer. 

Sahin [183] investigates the impact of quality conformance on manufacturers and users 

replacement costs for products under free-replacement and pro-rata warranty. He 

concluded that consumer's cost is severely influenced by the both quality improvement 

and the manufacturer’s quality inspection. 

Chukova and Hayakawa [45] modeled warranty claims and evaluated warranty costs 

allowing non-zero repair time. They use alternating renewal process in finite horizon and 

derive warranty costs for finite life cycle of the product and attribute a cost for the 

duration of repair time.  

Thomas [201] predicted total warranty reserves for a product sold under a nonrenewal 

PRW. He calculated total warranty costs for several failure distributions. He also 

considered discounting value of the money since warranty claims are realized in the 

future. 

In the warranty cost estimation models, it is often assumed that the product is used 

continuously. This is true for some industrial products, but most consumer products are 

used intermittently during their lifetimes. In general, the product failure rate is less when 

product is idle. Additionally, the product failure depends not only on its age but also on 

its usage frequency. Murthy [148] proposed two different models to model the failure 
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times for both repairable and non-repairable products. In the first model, the product 

failure depended on its age and usage without considering whether it is in use or not in 

use at the time of failure. In the second model, he assumed a constant failure rate when 

the product is idle. He used a Markov process to model the failure distribution function.  

In the next sub-section we shall study the literature concerning two-dimensional policies.  

 

2.7.2 Two-dimensional warranty policies 

The 2-D policies have not received much attention from researchers as 1-D 

policies, but recent research in this area has began due to its applicability across various 

products and industries. Murthy et. al. [150] studied two-dimensional, FRW policies for 

non-repairable products. They proposed three alternative two-dimensional warranty 

policies that sellers should consider beside fixed x-year-y-usage warranty coverage. For 

each two-dimensional warranty policy, they have calculated the expected unit warranty 

cost and the life cycle cost of the product.  

One-dimensional point process approach assumes a relationship between the two-

variables in the model, namely age and usage. Moskowitz and Chun [142] assume a 

linear relationship between age and usage of the product and model FRW warranties 

using conditional Poisson process. They developed a Poisson regression model for 

obtaining the expected warranty costs. Chun and Kwei [47] studied two-attribute policy 

using an approach similar to that of Moskowitz and Chun [141] and developed decision 

models to obtain the expected total warranty cost and determine the effective warranty 

period. Moskowitz and Chun [142] developed two types of two-dimensional warranty 

models based on a Poisson regression model and expected utility theory. First, they 
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determined the optimal warranty price per product that is sold with a fixed two-

dimensional warranty. Later, they generated different two-dimensional warranty plans for 

a given warranty price so that all customers will have the same expected repair or 

replacement cost. 

Jack and Murthy [90] proposed a new repair-replacement strategy for products sold with 

non-renewing free replacement warranty policy by splitting the rectangular warranty 

period into three parts, namely regions 1, 2, and 3. The repair strategy consisted of 

minimal repair in regions-1 and 3 and replacement in intermediate region-2. They 

developed a control limit sub-optimal strategy with minimal expected cost for servicing. 

Iskandar and Murthy [85] consider a repairable item under FRW policy and derived 

expected cost of servicing the warranty, and they compare two strategies in a rectangular 

region. Iskandar et al. [87] study a 2-D combination warranty policy which combines the 

features of FRW and PRW polcies in 2-D. They discuss renewing and non-renewing 

options and perform cost analysis of expected servicing costs among combinations of 

policies developed. Baik et al. [10] extend the concept of minimal repair form of 1-D 

policy to a 2-D policy. They compare the strategy of minimal repair to the strategy of 

replacement upon failure. Iskandar et al. [86] develop a new strategy to replace the failed 

product for the first time in a specified region of the rectangular warranty and minimally 

repair for all other failures during the warranty period. 

Eliashberg et. al. [65] developed a two dimensional model for a FRW in order to find the 

optimal warranty reserve. They assumed that the usage is a monotonically increasing 

function of time. A “stochastic logistic function” was used for this purpose. They also 

assumed that the seller repairs the product and the type of repair is imperfect. They 
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defined a loss function associated with having established a warranty reserve and 

calculated the warranty reserve that minimizes the loss function. 

 

2.8 SUMMARY 

In this chapter, we have reviewed representative research papers and articles in 

the areas of Dempster Shafer theory, fuzzy set theory, multi-objective game theory, 

particle swarm optimization, and warranty policies to show the wide range of 

applications and development of various new methods and their applications to a variety 

of problems. In the next chapter, we present the basic concepts of these topics in the 

context of the proposed research work. 
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CHAPTER 3 

REVIEW OF BASIC CONCEPTS 
 

3.1 OVERVIEW 

  In general, uncertainty can be broadly classified in to three types. The first one is 

aleatory uncertainty (also referred to as stochastic or inherent or irreducible or objective 

or type A uncertainty or variability) - It results from the fact that a system can behave in 

random ways. For example, the failure of an engine can be modeled as an aleatory 

uncertainty because the failure can occur at a random time. One cannot predict exactly 

when the engine will fail even if a large quantity of failure data is gathered (available). 

The second one is epistemic uncertainty (also known as subjective or reducible or type B 

uncertainty or ignorance) - It is the uncertainty of the outcome of some random event due 

to lack of knowledge or information in any phase or activity of the modeling process. By 

gaining information about the system or environmental factors, one can reduce the 

epistemic uncertainty. For example, a lack of experimental data to characterize new 

materials and processes leads to epistemic uncertainty. The third one is numerical 

uncertainty (also known as error) – It is present, for example, when there is numerical 

error due to round-off errors, truncation errors, errors associated with the solution of 

ordinary and partial differential equations. 
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Conventionally, probability theory has been used to characterize both aleatory and 

epistemic uncertainties. However, the recent developments in the characterization of 

uncertainty reveal that traditional probability theory provides an inadequate model to 

capture epistemic uncertainty. It is recognized that probability theory is best suited to deal 

with aleatory uncertainty. A traditional probabilistic analysis follows Principle of 

Insufficient Reason and axiom of additivity. For example, the failure of a gear can occur 

as a result of bending fatigue, pitting, micropitting, scuffing and wear. An expert assigns 

a probability of failure of gear due to bending fatigue as 0.4. The expert knows nothing 

about other failure modes of the gear. Principle of insufficient reason follows that all 

simple events with unknown probability distribution in a given sample space are equally 

likely. The axiom of additivity follows that all probabilities satisfying specific properties 

must add to 1. Thus, according to probabilistic analysis, one could assign a probability of 

failure of gear 0.15 to each of the four remaining modes of failure. This implies that 

probabilities of failure of these four modes are assigned a precise probability even in the 

face of the complete ignorance on these modes on the part of the expert.  

It is known in the probability theory that the knowledge of the probability of 

likelihood of the event occurrence can be translated in to the knowledge of the probability 

of likelihood of that event not occurring. For example, if an expert believes that a failure 

of the system due to the failure of a particular component is 0.4, then this does not mean 

that expert believes that the failure of the system will not occur due to that component 

with likelihood of 0.6. Thus these assumptions of axiom of additivity and the principle of 

insufficient reason can model the random events associated with aleatoric uncertainty but 

not sufficient belief or knowledge is applied. Analysis of these situations, where there is 
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little information to evaluate a probability or when the given information is nonspecific, 

ambiguous or conflicting, is required in many engineering applications (for example, in 

the case of risk assessment). It is evident in these situations where precise probability 

cannot characterize the uncertainty and thus makes us to consider an interval or set as the 

measure of probability. To summarize the important implications in the characterization 

of the measure of probability as an interval are a) the principle of insufficient reason is 

not applicable, b) the axiom of additivity is not applicable, and c) the precise probability 

from an experiment or an expert is not mandatory. Thus, probability theory cannot be 

applied to every situation involving more than one kind of uncertainty. Apart from 

probability theory, several other theories like fuzzy theory, evidence theory and so on are 

introduced to handle these uncertainties. The main difference among these theories is in 

the assignment of belief and commonality is in the determination of degree of belief to 

uncertain events which are likely to occur. 

We present four different types of evidences from multiple sources that impact the choice 

of how the evidence is to be combined: 

The first one is consonant evidence- it represents the situation where each evidential set is 

supported by the next larger evidential set and implies an agreement on the smallest 

evidential set; however, there is conflict between the additional evidence that the larger 

set represents in relation to the smaller set. For example, let the failure data from four 

different service stations (S1, S2, S3 and S4) of an automobile be as demonstrated in Fig 

3.1 with  

S1: mainly due to failures of gearbox 
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S2: mainly due to failure of gearbox and brakes 

S3: mainly due to failure of front shock absorber and gearbox 

S4: mainly due to failure of gearbox, brakes, front shock absorber and engine. 

 

                          

 

The second one is consistent evidence- it implies an agreement on atleast one evidential 

set or element. For example, let the failure of automobiles from different service stations 

be as shown in Fig 3.2 with 

S1: mainly due to failure front shock absorber 

S2: Gearbox and front shock absorber 

S3: Brakes and front shock absorber 

S4: Front shock absorber and engine. 

E-Engine 

G-Gearbox 

B-Brakes 
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Figure 3.1 Consonant evidence obtained from multiple sources [185] 



www.manaraa.com

38 
 

 
 

 

                    

 

The third one is arbitrary evidence- in this case, there is some agreement between some 

sources but there is no consensus among sources on any one element. For example, let 

the failure of automobiles from different service stations be as shown in Fig 3.3 with 

S1: mainly due to failure of front shock absorber 

S2: Gearbox and brakes 

S3: Front shock absorber and gearbox 

S4: Brakes and engine. 
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FS-front shock absorber 

Figure 3.2 Consistent evidence obtained from multiple sources 
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The fourth one is disjoint evidence- in this case, all of the sources supply conflicting 

evidence. For example, let the failure of automobiles from different service stations be as 

shown in Fig 3.4 with 

S1: mainly due to failure of front suspension 

S2: Bakes 

S3: Gearbox 

S4: Engine 
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FS-front shock absorber 

 Figure 3.3 Arbitrary evidence obtained from multiple sources 
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3.2 DEMPSTER SHAFER THEORY (DST) 

DST, also called evidence theory, is a branch of mathematics that concerns with 

the combination of empirical evidence in an individual’s mind in order to construct a 

coherent picture of reality. Evidence theory is a generalization of classical probability and 

possibility theories from the perspective of bodies of evidence and their measures, even 

though the methodologies for manipulation of evidence are totally different 

[222,210,212,218]. It can handle both epistemic uncertainty and aleatory uncertainty in 

its framework. When the evidence is sufficient enough to permit the assignment of 

probabilities to single events, the DST model collapses to the traditional probabilistic 

formulation. One of the most important features of DST is that the model is designed to 

cope with varying levels of precision regarding the information and no further 

assumptions are needed to represent the information. DST theory [55] is found by adding 

the third category “don’t know”, to the familiar dichotomy “it’s true” or “it’s false”. More 

precisely, let the non negative probabilities (a, b, c) represent the triad “known to be 
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  Figure 3.4 Disjoint evidence obtained from multiple sources 



www.manaraa.com

41 
 

 
 

true”, “known to be false”, and “don’t know” then as per DST, it implies that a + b + c = 

1 that is ‘a’ – your evidence “for truth” , ‘b’ – evidence “against” and c = 1 - a - b for 

residual ambiguity. 

Frame of discernment: The theory assumes that there is a fixed set of mutually exclusive 

and exhaustive elements called the Environment or Frame or Frame of Discernment 

(FOD) or sample space( Θ ) which is given as 

{ }nθθθθθ ,....,,, 4321=Θ                    (3.1) 

We assume that all possible elements of the universe are present in this set and therefore 

the set is exhaustive. For simplicity, we assume that Θ is a finite set in equation (3.1). 

Each subset of Θ can be interpreted as a possible solution to a question. There can be 

only one correct solution subset to a question. The term “discern” means that it is 

possible to distinguish the one correct answer from all the other possible answers to a 

question. The power set of the environment/FOD has elements as answers to all the 

possible questions of the frame of discernment. This means that there is a one to one 

correspondence between the elements of the power set ( Θ ) and the subsets of Θ . 

  Three important functions are defined in DST: the basic probability assignment (or   

mass) function, the Belief function (Bel), and the Plausibility function (Pl). 

 3.2.1 Basic probability assignment 

The basic probability assignment (bpa) is a primitive of evidence theory. Another 

term for bpa is mass (m). It is customary in DST to think about the degree of belief in 

evidence as analogous to the mass of a physical object i.e., mass of evidence supports a 
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belief. Generally, the term “basic probability assignment” does not refer to probability in 

the classical sense. The bpa, represented by m, defines a mapping of the power set to the 

interval between 0 and 1, where the bpa of the null set is 0 and the summation of the 

bpa’s of all the subsets of the power set is 1. The value of the bpa for a given set A, 

represented as m(A), expresses the proportion of all relevant and available evidence that 

supports the claim that a particular element of Θ  (the universal set) belongs to the set A 

but to no particular subset of A . The value of m(A) pertains only to the set A  i.e., portion 

of total belief assigned exactly to proposition A and makes no additional claims about 

any subsets of A. Any further evidence on the subsets of A would be represented by 

another bpa, i.e. B ⊂ A, m(B) would the bpa for the subset B. Formally, this description of 

bpa, m, can be represented with the following three axioms/equations: 

 2   0)(m Θ∈≥ AanyforA                 (3.2)  

0)m( =φ                       (3.3)  

∑
Θ∈

=
2

1)(
A

Am                              (3.4) 

A belief structure is defined as the collection of all values of m(A) for Θ⊂A , denoted as 

{ }Θ⊂AAm :)( .  

Properties of bpa: 

1. Additivity does not necessarily hold       (3.5)  

2. Monotonicity does not necessarily hold 

{ }( ) { }( ) { } { }211211 , ofsubset  a is h even thoug , xxxxxmxm ≥        (3.6)  

{ }( ) { }( ) { }( )2121 , xxmxmxm ≠+



www.manaraa.com

43 
 

 
 

3. It is not required that ( ) ( ) 1but  ,1 ≤Θ=Θ mm          (3.7) 

For example, when there is a robbery in a house and there are three suspects, the frame of 

discernment consists of three elementary propositions, { }CBA ,,=Θ , where { }A means 

that A is the thief. If there is a witness (E1

{ }( )Am

, evidence), and she gave her testimony for only 

A, let’s say is 0.7. However, we cannot assign the remaining 0.3 to { }( ) { }( )CmBm ,  

or { }( )CBm , , because the evidence given by the witness is just for suspect A, and she did 

not testify against suspects B and C. Therefore, 0.3 is assigned to the degree of 

uncertainty { }( )Θm . 

From the basic probability assignment, the upper and lower bounds of an interval can be 

defined. This interval contains the precise probability of a set of interest (in the classical 

sense) and is bounded by two nonadditive continuous measures called Belief and 

Plausibility.  

 

3.2.2 Belief function (Bel) 

The belief for a set A is defined as the sum of all the basic probability 

assignments of the proper subsets B of the set of interest A (B ⊆ A). Belief [75] can be 

seen to be a lower bound on the interval which contains the precise probability of a set of 

interest (in the classical sense) [3] 

∑
⊆

=
ABB

BmABel
|

)()(                                                                                                   (3.8) 
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3.2.3 Plausibility function (Pl)  

The plausibility for a set A is defined as the sum of all the basic probability 

assignments of the sets B that intersect the set of interest A (B ∩ A φ≠ ). Thus, for all 

sets A that are elements of the power set n2  where n is the number of elements in the 

frame of discernment, the plausibility is given by  

∑
≠∩

=
φABB

BmAPl
|

)()(                                                                                   (3.9) 

Thus plausibility can be seen as the upper bound of the interval which contains the 

precise probability of a set of interest (in the classical sense) [3]. Although the Bel(A) and 

Pl(A) have been defined in terms of the bpa, they can also be derived from each other as 

)(1)( ABelAPl −=                                                                                                       (3.10)  

where A is the complement of A. 

We also define )( = Doubt(A) ABel  

Due to a lack of information, it is more reasonable to present bounds for the result of 

uncertainty quantification, as opposed to a single value of probability. This precise 

probability of an event (in the classical sense) lies within the lower and upper bounds 

given by Belief and Plausibility, respectively. 

                                         )()()( APlAPABel ≤≤        (3.11) 

The total degree of belief in a proposition “A” is expressed within a bound [Bel(A), 

Pl(A)], which lies in the unit interval [0,1], as shown in Figure 3.5.  
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    Figure 3.5 Belief (Bel) and Plausibility (Pl) 

Note that the belief interval [Bel(A), Pl(A)] reflects the uncertainty and ignorance 

associated with A, and the following two parameters play an important role: 

- The actual values of Bel(A) and Pl(A) (to measure the uncertainty about A) 

- Size/length of the interval (to measure the ignorance) 

For example, the Belief interval [05, 0.8] for a proposition, for example, “ the person in 

the house is dead” implies that the statement is true with a confidence of 0.5, false with a 

confidence of 0.2 and the difference 0.3 is indeterminate – meaning that the person could 

either be dead or alive. Thus DST allows one to specify a degree of ignorance in the 

specific situation instead of being forced to supply prior probabilities that add to unity. 

The inferences can be drawn from the belief interval as shown in Table 3.1. 

 

 

 

 

uncertainty Bel(A) 

Pl(A) 

Bel( A ) 
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Table 3.1 Inferences from the belief interval 

Case Condition Example 

Ignorance Bel(A)<< Pl(A) [0,1] 

Maximum information Bel(A) =  Pl(A) [0.7,0.7] 

Certainty Bel(A) & Pl(A) ≈ 1 [0.99,1] 

Uncertainty Bel(A) & Pl(A) ≈ 0.5 [0.49,0.5] 

 

Focal elements: Those propositions in the FOD ( Θ ) that possess nonzero masses are 

called focal elements of FOD: 

                             }0)(:{)( >Θ⊆=Θ AmAF                                                             (3.12) 

Core: The union of all focal elements corresponding to a bpa assigned to the FOD ( Θ ) is 

referred to as its core. 

Body of Evidence (BoE): The triple { }mF ,,Θ  is referred to as the body of evidence (BoE) 

For the automobile example considered in section 3.1, let the two evidences for the 

failure of the automobile be given as 

3.0)(     1.0)(   6.0)(: 1111 =Θ== mBmGmm  

4.0)(    4.0)(  2.0)(: 2222 =Θ== mBmGmm  

}},{},{},{,{     have  weso, BGBGφ=Θ  
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}}{},{{ and BGF =  

},,{)( evidence ofbody  second and  },,{)( evidence ofbody First 2211 mFBoEmFBoE Θ=Θ=  

 

3.3 FUZZY SET THEORY 

Zadeh introduced the fuzzy set theory in 1965 [220]. Fuzzy set theory is a 

generalization of classical set theory as a mathematical way to represent the 

impreciseness and vagueness present in the everyday life. It was successfully applied in a 

variety of applications including those from artificial intelligence, consumer electronics, 

optimization, decision theory, and control system design. In real life engineering 

problems, several uncertain conditions exist during the analysis of the problem. Some of 

the uncertain information is vague, incomplete, imprecise, linguistic, or qualitative, 

which makes it impossible to use conventional or probabilistic methods to handle it. 

Thus, fuzzy sets are introduced to model the incomplete, linguistic or vague information 

encountered in real world engineering problems. In classical set theory, an element may 

or may not belong to a certain set. In fuzzy set theory, an element can belong to a certain 

set partially. Some researchers [22] suggested the use of fuzzy sets in order to handle the 

uncertainties present in the analysis of engineering problems 

 

3.3.1 Concept of fuzzy sets 

 In conventional set theory, crisp (deterministic) sets are defined such that F = {x / 

x = 3}, then for a given number, it can only reside in one set, that is, the level of 
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presumption or level of membership α of  “x is 3” is one, while α of “x is not 3” is zero. 

Therefore, a given crisp number is either in this set, or not. For a fuzzy set, things are 

different. A fuzzy set B in U (the universe set) can be treated as the coupling between the 

level of presumption α and the interval of confidence  at level α , where α is 

within the range of zero to one,   and  are, respectively, the lower and upper bounds 

of A at the α level. A fuzzy set can be represented as: 

                                             (3.13) 

It denotes the collection of all points  with the associated membership 

function . 

A fuzzy set B is convex if and only if every ordinary subset defined by [51] 

                                                                                 (3.14) 

is convex. Another definition is  

                                                                (3.15) 

where X  Y means minimum of X and Y.  

A fuzzy set is any set that allows its members to have different grades of membership 

function in the interval [0, 1]. The crisp value of a fuzzy number is the value 

corresponding to a membership function value of one. A fuzzy number can also be 

represented by a set of discrete pairs containing a value x and its associated membership 

value α as . As an example, the fuzzy number, “x is not 3”, may be 

described by the membership function shown in equation (3.16).  In discrete form, B can 



www.manaraa.com

49 
 

 
 

be represented as: B = {0.0/0.0, 0.5/2.5, 0.9/2.9, 1.0/3.0, 0.8/3.4, 0.25/4.5, 0.0/5.0}. A 

membership value of one indicates a full membership while a value of zero indicates non-

membership. 

               (3.16) 

For the fuzzy number described in equation (3.16), the element x = 3.4 has a membership 

value of 0.8 in the fuzzy set “about 3”. The membership function can have a linear or a 

nonlinear form. 

 

3.3.2 Fuzzy set relations 

The following terminologies are important in describing fuzzy relations: 

• The -level ( -cut) of a fuzzy set B in U is defined as  

• Two fuzzy sets A and B are said to be equal, A=B, if  , for all 

  

• A fuzzy set A is said to be contained in  

Now a number of definitions and operations on fuzzy sets are given: 

• Fuzzy complement:  

• Fuzzy union:  

• Fuzzy intersection:  

• For fuzzy sets A and its complement set  
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3.3.3 -Cut representation 

In general, when a fuzzy set is discretized, the number of elements in the set could 

become quite large. Thus, in numerical computations, it is convenient to express fuzzy 

numbers as sets of lower and upper bounds of a finite number of α-cut subsets as shown 

in Fig 3.6. Corresponding to a level of α (α-cut), the value of x is extracted in the form of 

an ordered pair with a closed interval [xl, xu]. The α-cut can be taken anywhere ranging 

from α = 0 (total uncertainty) to α = 1(total certainty). An interval number is represented 

as an ordered pair [xl, xu] where xl ≤  xu. In case xl = xu

∈

, the interval is called a fuzzy- 

point interval, e.g. [a, a].  Thus membership functions are constructed in terms of 

intervals of confidence at several levels of α-cuts. The level of α, α [0,1], gives an 

interval of confidence Xα 

                    X

, defined as  

α ∈= {x R, μX

where X

(x)≥α}.                   (3.17) 

α 

(α

is a monotonically decreasing function of α , that is  

1<α2 ⇒) (X 2α ⊂ X 1α )        (3.18) 

or  

(α1<α2 ⇒)  [ 2
2

2
1 , αα aa ] ⊂  [ 1

2
1

1 , αα aa ] for every α1, α2 ∈ [0,1]             (3.19) 
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Figure 3.6 Typical fuzzy number, X 

 

The fuzzy numbers thus defined are known as intervals. Once the intervals or ranges of a 

fuzzy quantity corresponding to specific α – cuts are known, the system response at any 

specific α – cut, can be found using interval analysis. Thus in the application of a fuzzy 

approach to uncertain engineering problems, interval analysis can be used.  

 

3.3.4 Fuzzy arithmetic [100] 

With fuzzy quantities expressed in interval form, fuzzy arithmetic operations can 

be carried out using interval operations at each of the n α –levels independently. The 

addition of two fuzzy numbers A and B with 

 and B         (3.20) 
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can then be expressed as 

;  i= 1, 2, 3, ……n       (3.21)  

The addition operation of fuzzy numbers is both commutative and associative. The 

subtraction of fuzzy numbers A and B can be expressed as 

;  i= 1, 2, 3, ……n       (3.22) 

The subtraction operation of fuzzy numbers is neither commutative nor associative. The 

multiplication of fuzzy numbers A and B can be expressed as 

{ }i
RRLRRLLL

i
RRLRRLLL babababababababaBA ].,.,.,.max[,].,.,.,.min[)( =× ;  

 i= 1, 2, 3, …… n                                                                                                         (3.23)  

The multiplication operation of fuzzy numbers is both commutative and associative but is 

not distributive in R. The inverse of a fuzzy number A can be expressed as 















=−

i
LR aa

A 1,11 ; i= 1, 2, 3 …n         (3.24) 

The division of fuzzy numbers A and B can be expressed as 

1)()( −×=÷ BABA ; i= 1, 2, 3 …n         (3.25) 

The square root can be defined only for positive fuzzy numbers. Let 2/1A  be the square 

root of a fuzzy number A . It can be defined as the fuzzy number C such that AC =2 . 

Then, by using Eq. (3.23), the square root of a fuzzy number is written as 

i
RL ccAC ],[2/1 == ; i= 1, 2, 3 …n           (3.26) 

where 2/1][ i
RR

i ac =            (3.27) 
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3.4 PARTICLE SWARM OPTIMIZATION (PSO) 

The PSO algorithm is based on the swarm intelligence techniques [13,67]. The 

concept of swarm intelligence was inspired by the social behavior of groups of animals 

such as a flock of birds, ants, or a school of fish. It is also a population based algorithm in 

which individuals are called particles and the population is called swarm. The PSO is 

similar to evolutionary algorithms (EA) in the sense that both approaches are population-

based and each individual has a fitness function. Based on the bounds or limits on the 

design variables, randomly generated values are taken as initial population in the 

algorithm. Another major difference between PSO and EA is that in PSO each individual 

depends from its history whereas no such mechanism exists in EA [64].  A PSO is an 

inherently continuous algorithm. In order to apply for discrete optimization problems, it 

should be modified suitably. Kennedy and Eberhart [103] proposed the first PSO 

algorithm where the kth
kV


 particle travels in the search space with velocity  at position

kX


. If the search space is n-dimensional, the kth

T
knkkk xxxX ].,...,,[ 21=



 individual of the population can be 

represented by an n-dimensional vector  and its velocity vector

T
knkkk vvvV ].,...,,[ 21=


. Let ikpbest  and gbesti denote the best previous position of the kth 

particle at ith iteration and the best particle in the population at the end of ith iteration, 
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respectively. The adaptable velocity and position of the particle k is updated using the 

following equation at i + 1 iteration as: 

)(())(() 21
1 i

ki
i
kik

i
k

i
k XgbestRandcXpbestrandcVV


−+−+=+         (3.29) 

11 ++ += i
k

i
k

i
k VXX


,   k = 1, 2, . . . . , K        

where 

 (3.30) 

()rand and Rand () are two different random numbers in the range [0,1], and 

21 and cc are positive constants, referred to as cognitive and social learning rates. 

Cognitive rate represents the particle’s own experience as to where the best solution is 

present in the design space where as social learning rate represents the entire swarm as to 

where the best solution is present in the design space.  Eberhart and Shi [63] introduced a 

parameter, called inertia weight, iw, to control the velocity over time in the PSO 

algorithm and termed the procedure the modified PSO. In the modified PSO, Eq. (3.29) 

for the updating velocity is changed to 

)(())(() 211
1 i

ki
i
kik

i
ki

i
k XgbestRandcXpbestrandcVwiV


−+−+= +

+     (3.31) 

where 1+iiw  is the inertia weight for the (i+1)th

)1(
max

minmax
max1 +

−
−=+ i

i
iwiw

iwiwi

 iteration, assumed to be linearly 

decreasing, as (Eberhart and Shi 2000 [42], Naka et al. 2001 [109]):  

         (3.32) 

where maxi represents the maximum number of iterations with miniw and maxiw denoting the 

initial and final inertia weights, respectively. After meeting the convergence criteria set 

by the user, the algorithms gives the global best value as the optimum solution of the 

algorithm. 
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The relation between the inertia weight and cognitive and social learning rates should 

satisfy the following relation in order to have guaranteed convergence, as given by Van 

den Bergh [204]: 

iwcc
<−

+ 1
2

21  

 

3.5 GAME THEORY 

In many real-world problems, several objectives must be satisfied simultaneously 

in order to obtain an optimal solution. The multiple objectives are typically conflicting 

and non-commensurable, and must be satisfied simultaneously. For example, we might 

want to minimize the total weight of a truss while minimizing its maximum defection and 

maximizing its allowable stress or, in the design of an automobile, an engineer may wish 

to maximize crash resistance for safety and minimize the weight for fuel economy. These 

are some examples of multi-objective problems with conflicting objectives, i. e., a step 

towards improving one of the objectives, worsens the other objective, is a step away from 

improving the other, increasing the first objective.  The common approach in these types 

of problems is to choose one objective and incorporate the other objectives as constraints. 

This approach has the disadvantage of limiting the choices available to the designer, 

making the optimization process a rather difficult task. Another common approach is the 

combination of all the objectives into a single objective function. This technique has the 

disadvantage of modeling the original optimization problem in an inadequate manner, 

generating solutions that will require a further sensitivity analysis to become reasonably 

useful to the designer. A more appropriate approach to deal with multiple objectives is to 
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use techniques that were originally designed for that purpose as used in the field of 

Operations Research. Many approaches have been refined and commonly applied in 

economics and control theory. Several techniques have been suggested for the solution of 

a multiobjective structural optimization problem. The game theory approach has been 

found to be superior to many other techniques since it finds not only the best compromise 

(Pareto-optimal) solution but also the relative contributions of the various objective 

functions to the best compromise solution. 

In the game theory, two concepts, namely the non-cooperative and cooperative game 

theories, are available. For a basic understanding of these theories, the number of design 

variables (n) is assumed to be same as the number of objective functions (k). The values 

of n and k need not be same in the general approach presented later. In game theory, each 

objective function is associated with a player. Thus the ith player aims to minimize his/her 

own objective function fi. It is further assumed, for simplicity, that the ith player will have 

control over only one design variable xi (and not on any other design variable). Although 

the ith

),...,,...,,( 21 nii xxxxf

 player would like to minimize his/her own objective function 

, other players can also influence the value of fi by controlling the 

design variables x1, x2, . . . , xi-1, xi+1, …, xn. Similarly, the ith player can influence the 

values of the objectives of other players, f1, f2, …, fi-1, fi+1, …, fn by controlling his/her 

own design variable xi

The game theory approach can be seen graphically by considering a multiobjective 

optimization problem involving two objective functions in two design variables. Let 

.  

),( 211 xxf  and ),( 212 xxf represent the two objectives and 1x  and 2x  the two design 

variables. As indicated earlier, one player is associated with each objective. Thus the first 
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player wants to select a design variable 1x , which will minimize his/her objective 1f  and 

similarly the second player seeks a variable 2x , which will minimize his/her own 

objective 2f . Assuming 1f  and 2f  to be continuous, let the contours of constant values of 

1f  and 2f  be as shown on Fig. 3.7. The dotted and dashed lines passing through O1 and 

O2

2x

, respectively, represent the loci of rational (minimizing) choices for the first and 

second player for a fixed value of  and 1x , respectively. The intersection of these two 

lines, if exists, is a candidate for the two objective minimization problem assuming that 

the players do not cooperate with each other (non-cooperative game). In Fig. 3.7, the 

point ),( *
2

*
1 xxN  represents such a point. This point, called the Nash equilibrium solution, 

represents a stable equilibrium condition in the sense that no player can deviate 

unilaterally from this point for further improvement of his/her own criterion. The Nash 

equilibrium point has the characteristic that  

),(),( *
211

*
2

*
11 xxfxxf ≤            (3.33) 

and  

),(),( 2
*
12

*
2

*
12 xxfxxf ≤           (3.34) 

where x1
*
1x may be to the left or right of  in Eq. (3.33) and x2

*
2x may lie above or below  

on Eq. (3.34). This idea can be extended to define the Nash equilibrium solution of a 

multiobjective optimization problem in k design variables and k objective functions as 

follows: 
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The Nash equilibrium solution denotes the solution of a non-cooperative game. In the 

above discussion, only one Nash equilibrium point has been assumed, i.e. the dotted and 

dashed lines in Fig. 3.7 intersect only at one point. An interesting situation occurs when 

the two lines intersect at more than one point. In such a case, since the values of 1f  and 

2f  are different at the multiple Nash equilibrium points, any player can have the 

advantage of declaring his/her move first (by choosing a proper value of his/her design 

variable) there by forcing the other players to play at the equilibrium point of his/her own 

choice. 

In a cooperative game, the two players agree to cooperate with each other and hence any 

point in the shaded region S of Fig. 3.7 will provide both of them with a better solution 

than their respective Nash equilibrium solutions. Since the region S does not provide a 

unique solution, the concept of Pareto-optimal (non-inferior) solutions can be introduced 

to eliminate many solutions from the region S. A feasible solution X


of a multiobjective 

problem is called Pareto optimal if there exists no other feasible solution Y


such that 

)()( XfYf ii


≤  for i = 1, 2, …, k with )()( XfYf ij


<  for at least one j (Rao 1996) [169]. 

In other words, a feasible vector  X


 is called Pareto optimal if there is no other feasible 

solution Y


that would reduce some objective function without causing a simultaneous 

increase in at least one other objective function. Using the definition of a Pareto optimal 

solution, all the points lying on the continuous line O1ACQDBO2

1f

, which represent the 

loci of tangent points between the contours of  and 2f , can be seen to be Pareto 

optimal points. Thus every point on this line has the property that it is not dominated by 

any other point in its neighborhood, i.e. 
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 )()( 11 PfQf ≤             (3.36) 

and  

)()( 22 PfQf ≤             (3.37) 

where Q is a point lying on the line O1O2 and P is a neighborhood point. Thus all points 

of S that do not lie on the fine O1O2 need not be considered in finding a cooperative 

game solution. The set of all points lying on the line AB denotes the Pareto-optimal set, 

denoted as Sp. The first task in the cooperative game theory is to find the Pareto optimal 

set Sp. After determining the Pareto-optimal set, the second task is to find a particular 

element (design vector) from the set Sp which represents a compromise solution that is 

acceptable to all the players. For this, the players establish specific rules of negotiation 

which can be used to formulate a supercriterion or bargaining model. The supercriterion 

can then be used to convert the multiobjective optimization problem into an equivalent 

single objective optimization problem whose solution yields a mutually agreeable 

compromise solution (an element of the Pareto optimal set Sp

A procedure for finding not only the Pareto optimal set S

).  

p but also the compromise 

solution (an element of Sp

 

) based on a supercriterion, is presented in chapter 7, in the 

form of a modified game theory. The procedure is termed modified game theory because 

it not only simplifies the computational procedure but also considers the solution of the 

general multiobjective optimization problem involving n design variables and k objective 

functions (n = k has been assumed in the game theory approach presented above).  
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Figure 3.7 Cooperative and non-cooperative game solutions [170] 

 

3.6 WARRANTY POLICIES 

In today’s competitive market, product warranties have become an important 

consideration for both the manufacturer (or seller) and the customer (or consumer). A 

warranty is an assurance given by the manufacturer to the buyer at the time of sale that 

the product will perform its intended functions satisfactorily for a specified length of 

warranty. The purpose of a warranty is to establish liability to the manufacturer when the 

product fails during the warranty period (when the product is properly used by the 
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customer). The common interpretation of warranty implies quality, reliability, product 

desirability, limitations of liability, and superior workmanship. 

Warranties are important to both manufacturers and customers. Manufacturers 

often use warranties as a marketing tool to increase the sales of the product. These 

warranties act as a means of protection to the manufacturers against exceptional claims 

by requiring certain responsibilities on the part of customers, for example warranties do 

not cover any product failures due to misuse of the product. Customers usually interpret a 

longer warranty period as a sign of quality and reliability. This is especially true for new 

products introduced in the market for which customers have little or no information about 

quality and reliability. For the customers, warranty provides a means of redress for 

product failures. 

There are four stages involved in the product purchase decision by a rational 

customer. They are a) perception of a need for the product, b) search for information, c) 

evaluation of alternatives, and d) product choice. It is seen that warranty plays an 

important role in the last three stages. Customers often compare the warranties apart from 

price, style and other characteristics of products before purchase. According to the 

Magnuson-Moss Warranty Federal Trade Commission Improvement Act, manufacturers 

of consumer products must provide any warranty information available to customers so 

that they can compare different product warranties. Manufacturers incur additional costs 

by offering warranty. However when warranty is used as a marketing tool to increase the 

sales, then it will increase the revenue. If the revenue generated by the warranty program 

exceeds the warranty cost, it is more sensible to sell the product with a warranty. Thus the 
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cost of the warranty program (i.e., warranty cost analysis) is, to be considered while 

designing an effective warranty program. 

A review of some basic concepts of probability and reliability is given in section 3.6.1 

followed by a description of different warranty policies in section 3.6.2. An automobile 

warranty problem is formulated in section 9.3 and the results of the optimization problem 

along with a sensitivity analysis are given in section 9.4.  

 

3.6.1 Basic concepts of probability and reliability [173] 

Let T be any continuous random variable in the interval (0, ∞). The uncertainty in 

the values of failure time, T, can be described through a continuous distribution function 

which denotes the probability  t) [27]: 

         (3.38) 

where  represents distribution function parameter set and t represents time. If there 

exists a function, , such that 

           (3.39) 

 over the interval ,  is called the density function associated with the 

distribution function . Integrating equation (3.39), we obtain,    

                 (3.40) 

The hazard function or failure rate function  associated with is defined as  

                                                                             (3.41) 
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The hazard function  can be interpreted as the probability that the product will fail 

in  provided that it has not failed at or prior to t. The reliability of the product, 

 is given by  

        (3.42) 

The hazard function, , in terms of reliability can be defined as  

            (3.43) 

Integrating equation (3.43), we obtain 

            (3.44) 

 

      Input                                                                          Output  

Figure 3.8 Block diagram of a series system 

 

A system is called a series system when it fails whenever any one of its components fails. 

The components need not be physically connected in series for the system to be called a 

series system. A typical block diagram of a series system is shown in Figure 3.8. For 

example, the two tires of a bicycle are considered to be in series to find its reliability 

because the failure of any one tire makes the bicycle inoperative. 

If   denotes the probability distribution function of failure time of the  component, 

then the failure time distribution of the series system, can be obtained as  

      (3.45) 

and the reliability of the series system, can be found as 

           (3.46) 

 

1 2 n 
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                     Input                                          Output 

 

 

Figure 3.9 Block diagram of a parallel system 

 

A system is called parallel system when it fails only when all of its components fail. The 

components need not be physically connected in parallel for the system to be called a 

parallel system. A typical block diagram of a parallel system is shown in Figure 3.9. The 

failure time distribution of a parallel system, can be obtained as  

                        (3.47) 

and its reliability, can be obtained as 

           (3.48) 

 

There are many different warranty policies available in practice. Depending upon 

the type of product, customer and manufacturer, warranty policies can be very simple or 

very sophisticated. Effective warranty management requires a proper evaluation of the 

alternative warranty policies. This work considers only consumer warranties, which can 

further be classified into several categories as indicated below. 

(i) Based on the type of remedial action  

1) Lump-sum rebate (money- back guarantee) 

1 

2 

n 
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2) Free replacement  

3) Replacement at a reduced cost 

4) Some combination of all the above 

(ii) Based on the number of criteria used to determine the length of warranty 

eligibility 

1) One dimensional 

2) Two dimensional  

3) Multi dimensional (more than two) 

(iii) Based on whether the warranty is renewal or non-renewal 

1) Renewing: Under this warranty all replaced or repaired products are covered 

whose warranty is identical to that of the original purchased product. 

2) Non-renewing: Under this warranty, the coverage extends only over the time 

remaining in the original warranty period. 

 

3.6.2 Taxonomy for classification of warranties 

If a warranty does not require product development after the sale of a product, 

then the warranty is classified to be of group A, consisting of policies applicable for the 

sale of a single product, and group B, consisting of policies applicable for the sale of a 

group of products (called a lot or batch sales). If a product development is involved, then 

the warranty is classified to be of group C. This division and the remainder of the 

taxonomy are shown in Figure 3.10. This classification can be further extended based on 

the dimensionality of the warranty policy. 
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Figure 3.10 Classification of warranty policies [1, 2, 3] 
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This work considers policies which fall under the category A5, A6 and A7 shown in 

Figure 3.10. All the warranty policies discussed in this work are non-renewing type. It is 

assumed that the repair time for all repairable products is equal to zero. 

 

3.6.3 One-dimensional warranty policies 

In the one-dimensional warranty policies [30,133], two simple policies, namely 

Free Replacement Warranty (FRW) and Pro-Rated Warranty (PRW), as well as a 

combination policy, namely FRW/PRW, are possible. 

 

3.6.3.1 Policy-1: Free Replacement Warranty (FRW) Policy 

The manufacturer agrees to repair or provide replacement for failed items free of 

charge up to a time W from the time of initial purchase. This is a non-renewing and one-

dimensional warranty policy applicable for both non-repairable and repairable products. 

 

3.6.3.2 Policy 2: Pro-Rated Warranty (PRW) Policy 

The manufacturer agrees to refund a fraction of the purchase price when the 

product fails before time W from the time of the initial purchase. The buyer or customer 

receives a cash rebate and is not constrained to buy a replacement product. The cash 

rebate to the customer may be of different types: 

Policy 2a: When the refund is a linear function given by  

        (3.49) 

where is the purchase price of the product. 
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Policy 2b: When the refund is a proportional linear function given by  

        (3.50) 

where  . 

Policy 2c: The refund is a quadratic function given by 

        (3.51) 

 

3.6.3.3 Policy-3: Combined Free Replacement Warranty/Pro-Rated Warranty 

(FRW/PRW) policy 

Under this policy, the manufacturer agrees to provide a free replacement of the 

original product up to time  from the time of initial purchase and any failure in the 

interval from  results in a pro-rated refund. The warranty does not 

renew. From the manufacturer’s view point, the rebate function as per the policy is 

represented as 

                (3.52) 

where is the purchase or buyer’s price of the product. 

 

3.6.4 Two-dimensional warranty policy [One-dimensional approach] 

In the two-dimensional warranty policies [135, 142], a simple non renewing 

policy, namely the Free Replacement Warranty (FRW), is considered. The procedure to 

find the corresponding expected warranty cost from the manufacturer’s view point can be 

computed as indicated below. 
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Policy-4: Free Replacement Policy (FRP) 

     Under this policy the manufacturer agrees to repair or provide a replacement for 

the failed product free of charge up to a time W or up to a usage U, whichever occurs 

first, from the time of initial purchase. The warranty region is a rectangle [0, W) × [0, U) 

as shown in Figure 3.11. U and W are the parameters of the policy. This policy does not 

renew. Let and  represent the age and usage for the product at time t, 

respectively. Let Y(t) represent the total usage over the interval [0,t), with the  first sale at 

t = 0. If no product failure has occurred in [0, t), then  

            (3.53) 

This is also true if all the failed items are repaired with their repair times equal to zero. In 

contrast, if the product is not repairable and if there have been one or more failures in [0, 

t) then    and          (3.54) 

In the one-dimensional approach, we model  as a function of . This function 

characterizes the product usage as a function of the age of the product. This relationship 

is assumed to be linear with a non negative coefficient R as: 

             (3.55) 

where R represents the usage per unit time or usage rate, and may vary from user to user. 

We can model it as a random variable with density function g(r) so that  

             (3.56) 

Three different forms of G(r) reflecting different usage rates across the population of 

buyers are given below: 

i) R uniformly distributed over [a, b], with :  

                 (3.57)  
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ii) R = a + A[b-a], with  , and A is a random variable with a Beta density 

function: 

     (3.58) 

           where B(p, q) is the Beta function. We assume that all the values of R are in the 
interval [a, b]. 

iii) R distributed according to the Gamma distribution : 

           (3.59)   

We assume the first form for R i.e., uniformly distributed as defined by equation (3.57) in 
this policy. 

When the usage rate R = r warranty stops at time   or W, if 

(i)                   (3.60) 

(ii)   where                        (3.61) 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Warranty region for policy 4 
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3.7 SUMMARY 

In this chapter, a complete description and basic differences present in different 

types of evidences are considered through an example. It also describes the important 

functions of Dempster Shafer theory in detail. This chapter describes the basic concepts 

of fuzzy theory. It also describes the basic principle of particle swarm optimization 

algorithm. Game theory was studied for multi-objective optimization problems in detail. 

Classification of several warranty policies with the one-dimensional and two-dimensional 

warranty policies studied in detail.  In the next chapter, a selection procedure is described 

to select the most suitable combination rule to combine various evidences obtained from 

multiple sources. 
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CHAPTER 4 

COMPARISON OF VARIOUS EVIDENCE-
COMBINATION RULES 

 

4.1 OVERVIEW 

For the uncertainty quantification (UQ), both deterministic and non-deterministic 

analysis is used in many engineering applications. Various UQ methods are applied to 

propagate and quantify the uncertainty present in a system based on the nature of 

uncertainty. As stated in chapter 3, in general, uncertainty can be broadly classified in to 

two types. The first one is aleatory uncertainty (also referred to as stochastic or inherent 

or irreducible uncertainty) - It results from the fact that a system can behave in random 

ways. The second one is epistemic uncertainty (also known as subjective or reducible 

uncertainty) - It is the uncertainty of the outcome of some random event due to lack of 

knowledge or information in any phase or activity of the modeling process. By gaining 

more information about the system and its environmental factors, one can reduce the 

epistemic uncertainty [50].  

Conventionally, probability theory has been used to characterize both aleatory and 

epistemic uncertainties. However, the recent developments in the characterization of 

uncertainty reveal that traditional probability theory provides an inadequate model to 

capture epistemic uncertainty. It is recognized that probability theory is best suited to deal 

with aleatory uncertainty. The present study uses Dempster-Shafer theory (DST) as the 

framework for representing uncertainty and investigates the issue of combination of 

evidence. The application of various combination rules like Dempster’s rule, Yager’s
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 rule, Inagaki’s extreme rule, Zhang’s center combination rule and Murphy’s average 

combination rule for representing uncertainty and combining evidences from multiple 

sources is investigated. In section 3.2, a review of the DST, along with some important 

functions, is given. Following that, in section 4.2, we state and explain in detail all the 

five different types of combination rules in the context of both robbery and automobile 

examples. The detailed procedures to apply all the evidence combinations rules are 

described in Appendix-A for these two examples. After understanding the basic 

characteristics of all the combination rules for combining evidence from multiple sources, 

we outline a procedure for selecting an appropriate rule in section 4.3. In section 4.4, an 

engineering application, the welded beam design problem, is solved for combining 

evidence from various evidence sets based on the proposed selection procedure to find 

the most suitable combination rule to be applied. In section 4.5, results are presented 

along with a comparative analysis of the combination rules when applied to each of the 

evidence sets. A summary of the chapter is given in the last section 4.6.  

 

4.2 COMBINATION RULES BASED ON DST 

The versatility of DST is the motivation for selecting DST to represent and 

combine different types of evidence obtained from multiple sources [74,185,181,190]. 

The various combination rules to combine evidence obtained from multiple sources are 

discussed in this section. 
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4.2.1 Dempster’s rule of combination 

Dempster’s rule of combination was introduced to enable the computation of the 

orthogonal sum of given evidences from multiple sources. Dempster’s rule uses bpa’s to 

combine multiple evidences. Although the bpa’s are assumed to be from independent 

bodies of evidence, they are defined on the same frame of discernment. One of the 

important areas of research in DST is the effect of independence of the bodies of 

evidence when combining evidence [96, 97, 98]. The Dempster’s rule involves a 

conjunctive operation (AND) for combining evidence. Two bpa’s 1m and 2m  can be 

combined to yield a new bpa 12m  denoted as 2112 mmm ⊕= .Specifically, the combined 

bpa ( 12m ) is calculated from the two bpa’s 1m  and 2m  as [1]: 

 φ≠
−

=
∑

=∩ Awhere
k
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12                                                       (4.1)    
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Equation (4.1) can be generalized to obtain nn mmmm ⊕⊕=  2112 , for combining the 

bpa structures m1, m2, m3  .... mn
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The denominators in equations (4.1) and (4.4), Ik−1  and IIk−1 , are called the 

normalization factors while Ik  and IIk  are called conflicts. Thus the normalization 

process not only ignores conflict but also attributes the bpa associated with conflict to the 

null set [57, 66, 71, 81, 128]. In addition, the normalization will yield counterintuitive 

results when significant conflict is present in certain contexts. Thus, the DST rule is not 

suitable for situations where there is considerable inconsistency in the available evidence. 

However, it is applicable, when there is some degree of consistency or sufficient 

agreement among the opinions of different sources. Thus the normalization of the DST 

rule yields counter intuitive results if the DST combination rule is applied to Zadeh’s 

example [190]. In the Zadeh’s example, there is one failed sensor among three sensors; A, 

B and C. The frame of discernment consists of three elementary propositions,

{ }CBA ,,=Θ , where { }A means that A is the failed sensor. Let E1

{ }( )Am

 be the evidence which 

states that is 0.99 and { }( )Cm  is 0.01. Let E2

{ }( )Bm

 be the evidence which states that 

is 0.99 and { }( )Cm  is 0.01. If, DST rule is used to combine the evidences E1 and 

E2, it yields, with certainty, that C is the failed sensor which is counter intuitive in the 

presence of the given evidences E1and E2

 

. The results given by different combination 

rules, when applied to Zadeh’s example, are shown in Table 4.1.  
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Table 4.1 Results given by different combination rules when applied to Zadeh’s 
example 

 
 A B C 

E1 0.99 0 0.01 

E2 0 0.99 0.01 

Dempster’s rule 0 0 1 

Yager’s rule 0 0 0.0001 

Inagaki’s rule 0 0 1 

Zhang’s rule 0 0 1 

Murphy’s rule 0.499 0.499 0.0002 

 

Robbery example

{ }CBA ,,=Θ

: There was a robbery in a house and there are three suspects, A, B and 

C, the frame of discernment consists of three elementary propositions, , 

where, for example, { }A means that A is the thief. Let the witnesses or evidences (E1 and 

E2

Table 4.2 Evidence for the robbery problem 

) be as shown in Table 4.2. 

 A B C Θ  

E1 0.5 0.1 0.1 0.3 

E2 0.6 0.1 0.1 0.2 

 

Dempster’s rule is applied. The resulting belief intervals for the three suspects are 

tabulated in Table 4.3.  
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4.2.2 Yager’s rule of combination 

Subsequent to DST, Yager proposed an alternative rule of combination in which 

all contradiction is attributed to total ignorance. He introduced the concept of a quasi-

associative operator because in many cases the evidence combination requires a non-

associative operator. Yager’s combination rule differs from Dempster’s rule in the way of 

handling the conflict. Yager used the term “ground probability mass assignment”, 

designated q [214]. The main differences between the basic probability assignment and 

the ground probability assignment lie in the normalization factor and the mass assigned to 

the frame of discernment ( Θ ), which implies total ignorance. According to Yager’s rule, 

the combined ground probability mass assignment is defined as follows                                              

∑
=∩

=
ACB

CmBmAq )()()( 21                                                                                                 (4.7) 

where )(Aq denotes the ground probability assignment associated with A. Equation (4.7) 

is same as Equation (4.1) with no denominator. Because Yager’s combination rule is not 

associative, for combining bpa structures m1, m2, m3  .... mn

( )nn
AnAAA

AmAmAmAq ∑
=∩∩

=
....21

2211 )().()(

 from ‘n’ different sources of 

evidence, Yager’s defines the combined bpa structure for any focal element A as  

          (4.8) 

In this formulation, normalization is avoided by allowing the ground probability mass 

assignment of the null set to be greater than zero, i.e., 0)( ≥φq . It is calculated exactly as 

Ik  in equation (4.3) of the Dempster’s rule. The ground probabilities are converted to the 

basic probability assignment of the universal set )(ΘYm  as: 

)()()( φqqmY +Θ=Θ                                                                                                      (4.9) 
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where )(φq and )(Θq are the ground probability assignment of the null set and universal 

set, respectively. 

When the conflict is equal to zero, ( k =0 or 0)( =φq ), Yager’s rule yields the same result 

as Dempster’s rule, and implies that               

0)( =φYm .                                                                                                                   (4.10) 

)()( AqAmY =                                                        (4.11) 

The bpas associated with Yager’s rule ( Ym ) and Dempster’s rule (m) are not the same. 

The following relations are valid between the ground probability assignments and the 

bpas of Dempster’s rule: 

0)( =φm                                                         (4.12) 

 
)(1

)()(
φq

qm
−

Θ
=Θ                                                         (4.13) 

Θ≠
−

= ,   where
)(1

)()( φ
φ

A
q
AqAm                                                             (4.14) 

In Yager’s rule, there is no normalization or scaling to the resulting combined evidence 

and the mass associated with conflict, )(φm , will appear as ignorance in the belief 

interval. The distinctive feature of Yager’s combination rule is shown in equation (4.9). 

When there is any contradiction among the evidences from different sources, the Yager’s 

combination rule treats that contradiction as coming from ignorance. If there is any 

additional knowledge, then this contradiction might be resolved. The Yager’s 

combination rule is more conservative than the Dempster’s combination rule. In the case 

of Zadeh’s example, Yager’s rule combines the evidences E1and E2 to indicate, with very 

small evidence, that C is the failed sensor which is closer to the intuitively expected result 
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based on the given evidences E1and E2

.0}{ =φq

; this is better than the one indicated by the 

Dempster-shafer theory. For the robbery example, with evidences given in Table 4.2, the 

belief intervals for the three suspects given by Yager’s rule are tabulated in Table 4.3. It 

can be seen that Dempster’s and Yager’s rules give the same combined result3ing bpa 

structures when  

 

4.2.3 Inagaki’s rule of combination 

Inagaki [83] proposed a combination rule using the ground probability assignment 

function (q), introduced by Yager, to define a continuous parameterized class of rules to 

combine evidences which include both Dempster’s and Yager’s rules. According to 

Inagaki, any combination rule can be expressed as  

         where)()()()( φφ ≠+= CqCfCqCm                                                                (4.15) 

 1)(
,

∑
≠Θ⊂

=
φCC

Cf                                                                         (4.16) 

  0)( ≥Cf                                                                            (4.17) 

In Eq. (4.15), the function  f  can be called a scaling function for )(φq with the conflict (k) 

defined by  

Θ≠= ,Cany for  
)(
)( φ

Cq
Cfk                                                                                             (4.18) 

Inagaki’s class of combination rules is constrained to satisfy the property: 

)(
)(

)(
)(

Dq
Cq

Dm
Cm

=                                                           (4.19)  

for any nonempty sets C and D which are distinct from Θ  or φ . If a weighting factor is 

applied to the evidence, based on some additional knowledge about the credibilities of the 
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sources, then it would change the ratio in Eq. (4.19) and thus the equality is not satisfied. 

As a result of constraint of Eq. (4.19) and its implication, Inagaki’s rule applies only to 

situations where information regarding the credibilities or reliabilities of the sources is 

not available. From Eq. (4.15), the constraint of Eq. (4.16) and the definition of k (Eq. 

(4.18)), Inagaki’s unified combination rule (denoted Um ) is derived as follows: 

φφ ,      where),()](1[)( Θ≠+= CCqkqCmU                                                                (4.20) 

)(])(1[)()](1[)( φφφ qkkqqkqmU −++Θ+=Θ                                         (4.21) 

where   
)()(1

10
Θ−−

≤≤
qq

k
φ

                               (4.22) 

From Inagaki’s rule, Dempster’s rule can be obtained by setting 1)](1[ −−= φqk  and 

Yager’s rule can be realized when k = 0 in equations (4.20) to (4.22). Since k is 

continuous-valued, the unified rule of combination results in an infinite number of rules 

of combination, as shown in Figure 4.1.  

 

        Yager’s rule                Dempster’s rule            

         k 

            0                              )](1[/1 φq−                           )]()(1/[1 Θ−− qq φ      

Figure 4.1 Inagaki’s rule of combination with different values of the parameter k 
 

Inagaki’s extreme rule, also called “the extra rule”, can be obtained by setting the value 

of k equal to the upper bound indicated in equation (4.22) so that 

Θ≠
Θ−−

Θ−
= CCq

qq
qCmU       where),(.

)()(1
)(1)(

φ
                                        (4.23)   

)()( Θ=Θ qmU                                              (4.24) 
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It is clear from Figure 4.1 that Inagaki’s extreme rule is nothing but the extrapolation of 

Yager’s and Dempster’s rules of combination with k set equal to its upper bound. As 

Inagaki’s extra combination rule is not associative when combining bpa structures m1, 

m2, m3, ...., mn

The difference between DST’s rule and Inagaki’s extreme rule is that only conflict,

 from ‘n’ different sources of evidences, Yager’s ground probability 

function for the combined bpa structure for any focal element C, can be used, with 

equations (4.8) and (4.23), to obtain Inagaki’s combined bpa.   

)(φm , 

is used in the normalization/scaling of the combined evidence in DST’s rule while both 

conflict and the degree of ignorance (mass associated with the universal set, )(Θm ) are 

used in the scaling of the combined evidence in Inagaki’s extreme rule. For the Zadeh’s 

example considered in section 4.2.1, the Inagaki’s extreme rule is used to combine the 

evidences E1and E2 to indicate with certainty, that C is the failed sensor which is same as 

the one indicated by Dempster’s rule. This result is counter intuitive with the given 

evidences E1and E2

 

. The results are tabulated in Table 4.1. For the robbery example, with 

evidences shown in Table 4.2, Inagaki’s extreme rule yields the belief intervals for the 

three suspects as shown Table 4.3.  

4.2.4 Zhang’s combination rule 

Zhang [221] introduced a combination rule as an alternative to the Dempster’s 

rule in which a two frame interpretation of DST is offered. Let S and T denote two 

frames of discernment- these could be the opinions of two experts. Let C, a subset of the 

Cartesian product S×T, be a compatibility set between the two frames. In this case, we 

are concerned with the truth in T but the probability P is available for the truth in S. The 
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information about S provides some information on T due to the presence of the 

compatibility relation. This information on T is described in the form of a belief function 

for any subset A of T, which can be written as  

}then,),(if allfor such that   |{)( AtCtstSssPABel ∈∈∈=                 (4.25) 

This two frame interpretation of DST is used to propagate evidence through logical links. 

We get evidence in one frame of discernment from its logical link to another frame. If the 

information available for the elements of S and T is denoted by s and t respectively, 

through the compatibility relation (C), then DST can represent the relationship, C, 

between s and t by a subset of the joint frame S ×T. For the two frame model, a subset Cs

∈

 

of T is defined for each s S through the compatibility relation { }CtstCs ∈= ),(| . Thus, 

the bpa over T can be defined by  

∑ =∈= }such that   |)({)( ACSsCPAm ss            (4.26) 

The belief function of A, as calculated using equation (4.26), is exactly the same as given 

by equation (4.25) : 

∑ ⊂= } |)({)( ACsPABel s           (4.27) 

The plausibility function is given by 

∑ ≠∩= }0 |)({)( ACsPAPl s          (4.28) 

where bpa of )(sP  is assigned to Cs

We use a moderate approach to include only a portion of P(s) in equation (4.27) which 

leads to the center probability P

. 

c

)()( sP
C

CA
AP

s s

s
c ∑

∩
=

 given by 

          (4.29) 
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where . represents cardinality. 

Zhang’s rule of combination introduces a measure of the intersection of the two sets A 

and B assuming them to be finite. The measure of intersection is the ratio of the 

cardinality of the intersection of the two sets divided by the product of the cardinality of 

the individual sets. Thus the measure of intersection of the sets A and B, denoted r(A,B), 

is given by  

BA
C

BA
BA

BAr =
∩

=),(                                            (4.30) 

where A ∩ B = C. The use of equation (4.30) in the combination rule reduces to the 

moderate approach indicated by equation (4.29). Zhang’s combination rule scales the 

products of the bpa’s of the intersecting sets (A ∩ B = C) with r(A,B), given by equation 

(4.30). This process is repeated for all intersecting pairs that give C. The scaled products 

of all bpa’s whose intersection equals C are added and then multiplied by a factor k~  

where k~  denotes a renormalization factor which is independent of C, m1, and m2

)]()([~)( 21 BmAm
BA

C
kCm

CBA
∑

=∩

=

. This 

renormalization factor makes the summation of the bpa’s equal to 1: 

                                                            (4.31) 

It can be seen that this rule corresponds to the Dempster’s rule when |C| = |A||B|. 

Dempster’s rule fails to consider the intersection of focal elements. There are many other 

ways to define the measure of intersection instead of equation (4.30) and thus many 

combination rules can be devised from the Zhang’s combination by defining a particular 

measure of intersection in equation (4.31). This rule is commutative but not associative, 

idempotent, or continuous. As Zhang’s combination rule is not associative when 
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combining bpas  m1, m2, m3, ....., mn 

 

from ‘n’ different sources of evidence, equation 

(4.31) can be modified as 

)]()()([~)( 2211
2121

nn
CAAA n

AmAmAm
AAA

C
kCm

n




∑
=∩∩

=         (4.32) 

where .21 nAAAC ∩∩=    

For the Zadeh’s example considered in section 4.2.1, Zhang’s rule combines the 

evidences E1and E2 to state, with certainty, that C is the failed sensor which is same as 

the one given by the Dempster’s rule a counter intuitive result with the given evidences 

E1and E2

 

 and the results are shown in Table 4.1. For the robbery example with evidences 

shown in Table 4.2, the application of Zhang’s rule gives the belief intervals for the three 

suspects as indicated in Table 4.3. 

4.2.5 Murphy’s average combination rule 

Murphy’s average rule [145] of combination uses the average of all bpas to define 

a new combined bpa. This average method has many attractive properties like 

convergence towards certainty of any particular event. To improve the performance of 

convergence, Murphy introduced the average belief in the combination rule. Thus, the 

initial averaging of bpas is followed by combining the evidence using DST ‘n-1’ times 

where ‘n’ is the number of evidences [216]. This approach solves the problem of 

combining conflicting evidences efficiently. The average of all bpas is recommended in 

situations where one source of evidence contradicts with several other sources of 

evidence that are consistent, to preserve the opinion from the majority of sources. When 

one of the sources is unreliable, but it is not clear which source it is, to reduce the effect 
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of that particular source on combination to some extent, Murphy’s average combination 

rule is used. Thus, the averaging process identifies the combination problems, shows the 

distribution of belief and preserves a record of unassigned belief (ignorance). For the 

Zadeh’s example considered in section 4.2.1, the Murphy’s rule combines the evidences 

E1and E2

 

 to state equal evidences of 0.499 for A and B with very small evidence for C , 

which means that the failed sensor can be A or B and the results are shown in Table 4.1. 

For the robbery example with evidences as shown in Table 4.2, the application of 

Murphy’s average combination rule gives the belief intervals for the three suspects as 

indicated in Table 4.3. 

Table 4.3 Robbery example: Results given by various combination rules 
 

Rule used to 

combine evidences 

E1 and E2 

Belief Interval 

for A 

Belief Interval 

for B 

Belief Interval 

for C 

)(Θm  

Dempster’s rule [0.7631,0.8421] [.0789,0.1578] [.0789,0.1578] 0.0789 

Yager’s rule [0.5800,0.8800] [0.0600,0.3600] [0.0600,0.3600] 0.3000 

Inagaki’s rule [0.7788,0.8388] [0.0805,0.1405] [0.0805,0.1405] 0.0600 

Zhang’s rule [0.8428,0.8857] [0.0571,0.1000] [0.0571,0.1000] 0.0428 

Murphy’s rule [0.7598,0.8421] [0.0789,0.1611] [0.0789,0.1611] 0.0822 

 

 

4.2.6 Discussions and Additional Examples [202] 

 The following observations can be made from the results given by the various 

combination rules applied to the robbery example. 
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1. As evidences, in terms of the mass assigned to thief A, differ by 0.1, it makes 

consonant type of evidence available for combination. 

2. It is clear that all combination rules converge to prove that A is the thief but the 

degree of the belief assigned to A by different combination rules is different. 

3. The belief assigned to thief A has been predicted to lie between 0.7 to 0.8 based 

on the evidences E1 and E2

4. The ignorance is less and belief assigned to thief A is high in case of Zhang’s rule 

which indicates that convergence is much quicker with this rule. 

. 

5. The Yager’s rule yields pessimistic conclusion for the belief (low value) assigned 

to A and hence the associated ignorance is very high (0.3). 

6. The belief for A has slightly larger values in the values predicted by the Murphy’s 

rule, Dempster’s rule and Inagaki’s rule in this order, but the conclusion about the 

thief is same for all these three rules. There is slight change in the scaling done on 

the combined evidence for the results obtained by using Dempster and Inagaki 

combination rules. 

7. There is slow decrease in the degree of ignorance associated with thief A in the 

same order of rules as in point 6. This shows that the degree of ignorance and the 

belief are inversely proportional to each other. 

8. If there is any additional evidence available or any information available on the 

reliabilities of the sources of evidence then we can physically justify which one of 

these three (Dempster’s, Inagaki’s, and Murphy’s) rules can be applied. 

 

Automobile example:  
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Consider an automobile with two states- safe to drive and unsafe to drive. The frame of 

discernment, consisting of the two states can be denoted as { }III ,=Θ , where { }I means 

that the automobile is safe to drive  and { }II means that it is unsafe to drive. Let the 

evidences (E1 and E2

Table 4.4 Evidence for the automobile problem 

) be as shown in Table 4.4. 

 A B Θ  

E1 0.5 0.3 0.2 

E2 0.6 0.1 0.3 

 

When the safety analysis of the automobile is conducted using the various rules of 

combination (using the procedures described in the case of the robbery example), the 

results shown in Table 4.5 can be obtained. 

 
Table 4.5 Results given by different combination rules for the safety analysis of an 

automobile 
 

Rule used to 

combine evidences 

E1 and E2 

Belief Interval 

for I 

Belief Interval 

for II 

)(Θm  

Dempster’s rule [0.7402,0.8181] [0.1818,0.2597] 0.0779 

Yager’s rule [0.57,0.86] [0.14,0.43] 0.29 

Inagaki’s rule [0.7546,0.8146] [0.1853,0.2453] 0.06 

Zhang’s rule [0.7909,0.8454] [0.1545,0.2090] 0.0545 

Murphy’s rule [0.7403,0.8205] [0.1794,0.2596] 0.0801 
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The following observations can be made from the results of the automobile safety 

problem regarding the characteristics of the various combination rules: 

1. All the combination rules predict that the automobile is safe to drive but the 

degree of the belief assigned to I is different for different rules. 

2. The belief assigned to the condition, automobile is safe (I) can be intuitively 

predicted to be around 0.75 based on the given evidences (as by summing the 

evidences given E1 and E2

3. Zhang’s rule gives a maximum belief (more than 0.75) for the safe condition of 

the automobile (I). Hence, this rule is not applicable for this example. 

). 

4. In the safety analysis of the automobile, the rule that predicts the lowest belief for 

the safe condition of the automobile (I) is considered to be the best rule of 

evidence combination (a conservative result). From this point of view, the 

Yager’s rule can be considered as the best combination rule for this example. 

5. In the failure analysis of the automobile, the rule that predicts the highest belief 

for the unsafe condition of the automobile (II) is considered to be the best rule of 

evidence combination. Inagaki’s extreme rule can be considered as the best 

combination rule for this example.  

 

There are three sensors out of which there is one faulty sensor. The frame of discernment 

consists of three states,

Fault sensor example:  

{ }CBA ,,=Θ , where { }A  means that sensor A is identified to be 

faulty. The evidences E1 and E2

E

 are as follows. 

1 4.0}{
,3.},{,2.0},{,1.0},{,0}{,0}{,0}{

=Θ
======

m
ACmCBmBAmCmBmAm

:  
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E2 4.0}{
,3.},{,2.0},{,1.0},{,0}{,0}{,0}{

=Θ
======

m
ACmCBmBAmCmBmAm

:  

When the fault sensor evidence is combined using all the five rules of combination (using 

the procedure indicated for the robbery example), the results are as shown in Table 4.6. 

Here we observe that all combination rules, except Zhang’s rule, give the same combined 

evidence. 

 
Table 4.6 Results of various combination rules for a fault sensor example 

 
Combination rule 

E1 & E2 

Belief Interval 

for A 

Belief Interval 

for B 

Belief Interval for 

C 

DST [0.06,0.64] [0.04,0.49] [0.12,0.81] 

Yager’s [0.06,0.64] [0.04,0.49] [0.12,0.81] 

Inagaki’s [0.06,0.64] [0.04,0.49] [0.12,0.81] 

Zhang’s [0.0443,0.6650] [0.2955,0.4975] [0.0886,0.8325] 

Murphy’s [0.06,0.64] [0.04,0.49] [0.12,0.81] 

 

There are three targets A, B, and C out of which there is one required target. The frame of 

discernment consists of three states,

Target identification example:  

{ }CBA ,,=Θ , where { }A  means that target A is the 

required target. The evidences E1 and E2

E

 are as follows. 

1 
111111

111111

1}{
,},{,},{,},{,}{,}{,}{

fedcbam
fACmeCBmdBAmcCmbBmaAm

−−−−−−=Θ
======

:  

E2 
222222

222222

1}{
,},{,},{,},{,}{,}{,}{

fedcbam
fACmeCBmdBAmcCmbBmaAm

−−−−−−=Θ
======

:  
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such that  1≤+++++ iiiiii fedcba
 

0,,,,, ≥iiiiii fedcba 2,1where1,,,,,and =≤ ifedcba iiiiii

 
The evidences E1 and E2 

Maximize (i) 

are generalized to combine two sources of evidence by using all 

rules of combination. Thus, we can formulate ten optimization problems so that we can 

make comparisons among the five different combination rules. These optimization 

problems are formulated as follows: 

{ } { }Yagerdst AbelAbel − ,  (ii) { } { }Inagakidst AbelAbel − ,  

(iii) { } { }Zhangdst AbelAbel − ,  (iv) { } { }Murphydst AbelAbel −  

(v) { } { }IngakiYager AbelAbel − ,  (vi) { } { }ZhangYager AbelAbel −  

(vii) { } { }MurphyYager AbelAbel − ,  (viii) { } { }ZhangIngaki AbelAbel −  

(ix) { } { }MurphyIngaki AbelAbel − ,  (x) { } { }MurphyZhang AbelAbel −  

to find the values of iiiiii fedcba and,,,,,  where i = 1, 2. The evidence and optimization 

results are tabulated for the ten optimization problems (which are solved by using 

MATLAB optimization toolbox) in Table 4.7. The examples discussed so far indicate 

that the five rules of combination have some distinct features and some similarities which 

are summarized in section 4. 
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Table 4.7(a) Results of Optimization problems for target identification example 

Optimiz

ation 

prob. 

no. 

Evidence 

Optimization 

result 

(i) 

0}{,0},{,0},{,0},{
,0}{,0.340535}{,0.659464}{:E

0}{,0},{,0},{,0},{
,0.974397}{,0}{,0.025602}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }dstAbel =1 

{ }YagerAbel  
=0.026287 

(ii) 
0}{,0},{,0},{,0},{

,0}{,0}{,0.719157}{:E
0}{,0},{,0.001957},{,0},{

,0.0380693}{,0.459944}{,0}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }dstAbel  
=0.5614 

{ }IngakiAbel  
=0.6181 

(iii) 

0}{,0.000072},{,0},{,0},{
,0}{,0}{,0.999927}{:E

0}{,0},{,0.631332},{,0},{
,0}{,0.368645}{,0.000022}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }dstAbel  
=0.3337 

{ }ZhangAbel  
=0.6670 

(iv) 

0}{,0.000001},{,0},{,0},{
,0}{,0}{,0.999999}{:E

0}{,0},{,0.268210},{,0},{
,0.162148}{,0.569640}{,0}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }dstAbel =0 

{ }MurphyAbel  
=0.5508 

(v) 

0}{,0.},{,0},{,0},{
,0}{,0}{,00000.1}{:E

0}{,0},{
,0.215182},{,0},{,0.762340}{

,0.012754}{,0.009722}{:E

2

1

=Θ===
===

=Θ=
===

==

mACmCBmBAm
CmBmAm

mACm
CBmBAmCm

BmAm

 

{ }YagerAbel  
=1 

{ }IngakiAbel  
=0.0097 
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Table 4.7(b) Results of Optimization problems for target identification example 

Optimiz

ation 

prob. 

no. 

Evidence 

Optimizati

on result 

(vi) 
0}{,0.307743},{,0},{,0},{

,0.689361}{,0}{,0.002895}{:E
0}{,0},{,0},{,0.034102},{

,0}{,0.965897}{,0}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }YagerAbel  
=0.01059 

{ }ZhangAbel  
=1 

(vii) 
0}{,0},{,0},{,0},{

,0}{,0}{,0000.1}{:E
0}{,0},{,0},{,0},{

,0.5000}{,0.5000}{,0}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }YagerAbel  
=0 

{ }MurphyAbel
 

=0.6666 

(viii) 
0}{,0},{,0.740115},{,0},{

,0.259569}{,0}{,0.000315}{:E
0}{,0},{,0},{,0.000852},{

,0}{,0}{,0.999147}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }IngakiAbel  
=0.3332 

{ }ZhangAbel  
=0.6664 

(ix) 
0}{,0},{,0},{,0},{

,0.224674}{,0}{,0.775325}{:E
0}{,0},{,0},{,0.243655},{

,0}{,0.756344}{,0}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }IngakiAbel  
=1 

{ }MurphyAbel
 

=0.4823 

(x) 
0}{,0.},{,0},{,0},{

,0.997166}{,0}{,0.002833}{:E
0}{,0},{,0},{,0.005559},{

,0}{,0.994440}{,0}{:E

2

1

=Θ===
===

=Θ===
===

mACmCBmBAm
CmBmAm

mACmCBmBAm
CmBmAm

 

{ }ZhangAbel  
=1 

{ }MurphyAbel
 

=0.000019 
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The following observations can be made from the results of the optimization problems in 

Tables 4.7(a) and 4.7(b) for the target identification problem: given  

1. The results obtained using DST rule in comparison with other combination rules 

indicate that the difference in the belief for the target A between DST and Yager’s 

rules is 0.9738 (maximum) while it is 0.0567 (minimum) between DST and 

Inagaki’s rules. 

2. The results obtained using Yager’s rule in comparison with other combination 

rules indicate that the difference in the belief for the target A between Yager’s and 

Inagaki’s rules is 0.9903 (maximum) while it is 0.6666 (minimum) between 

Yager’s and Murphy’s rules. 

3. The results obtained using Inagaki’s rule in comparison with other combination 

rules indicate that the difference in the belief for the target A between Inagaki’s 

and Yager’s rules is 0.9903 (maximum) while it is 0.3332 (minimum) for between 

Inagaki’s and Zhang’s rules. 

4. The results obtained using Zhang’s rule in comparison with other combination 

rules indicate that the difference in the belief for the target A between Zhang’s 

and Murphy’s rules is 0.9999 (maximum) while it is 0.3333 (minimum) between 

Zhang’s and DST rules. 

5. The results obtained using Murphy’s rule in comparison with other combination 

rules indicate that the difference in the belief for the target A between Murphy’s 

and Zhang’s rules is 0.9999 (maximum) while it is 0.5177 (minimum) between 

Murphy’s and Inagaki’s rules. 
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4.3 PROPOSED SELECTION PROCEDURE 

The following guidelines are proposed to provide an insight in to the use of 

different combination rules depending on the nature of evidence available from different 

sources. The situations or conditions under which each of the combination rules is 

applicable are given below: 

 

Dempster’s rule: 

-When the sum of the masses of all focal elements in the body of evidence is very large 

compared to the mass associated with the frame of discernment. 

-When the evidences from different sources are not conflicting. 

-When there is no measure of intersection among the different evidences. 

-When similarities exit among the bodies of evidence from different sources, i.e., when 

evidences are consistent with each other. 

 

Yager’s rule: 

-When the mass associated with the frame of discernment is comparable to the sum of the 

masses of all focal elements in the body of evidence. 

-When the evidences from different sources have some conflict. 

-When there is no measure of intersection among the different evidences. 

-When only partial evidences are available from different bodies of evidence obtained 

from different sources. 

- When the analysis is conducted from the point of view of the safety of the system. 
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Inagaki’s rule: 

-When the mass associated with the frame of discernment is high or comparable to all 

other evidences. 

-When the evidences from different sources have some conflict. 

-When there is no measure of intersection among the various evidences. 

-When evidence is available for every interval of the required output parameter, such as 

the factor of safety, of the system. 

- When the analysis is conducted from the point of view of the failure of the system. 

 

Zhang’s rule: 

- When the measure of intersection among the various evidences is available. 

-When the mass associated with the frame of discernment is low or comparable to all 

other evidences. 

-When the evidences from different sources do not have much conflict. 

- When similarities exit among the bodies of evidence obtained from different sources. 

 

Murphy’s average combination rule: 

- When the evidences from different sources are conflicting in nature. 

-When one body of evidence highly conflicts with other bodies of evidence. 

--When there is no measure of intersection among the various evidences. 

-When evidence is available for every interval of the required output parameter, such as 

the factor of safety, of the system. 
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4.4 ENGINEERING APPLICATION – A WELDED BEAM PROBLEM 

The application of the various models for combining evidence is illustrated by 

considering the failure analysis of a welded beam [169] in the presence of different 

bodies of evidence in the various evidence sets. Consider a beam of length L and cross-

sectional dimensions t and b that is welded to a fixed support as shown in Figure 4.2. The 

weld length is l on both the top and bottom surfaces and the beam is required to support a 

load P. The weld is in the form of a triangle with a depth of h. The maximum shear stress 

developed in the weld,τ , is given by 

 22 )''(cos'''2)'( τθττττ ++=                     (4.33) 

where  

lh
P
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where θ  is the angle between 'τ  and ''τ . 
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Figure 4.2 Welded beam 

The intervals of the factor of safety (FS) are classified into three categories based on the 

maximum induced shear stress as follows.  

Category I: ]5.1,3.1[}{ == IFS  

Category II: ]7.1,5.1[}{ == IIFS  

Category II: ]0.2,7.1[}{ == IIIFS  

The allowable or permissible shear stress corresponding to a factor of safety of 1 is 

assumed to be 2/ 13600 inlb . The beam is considered safest if the factor of safety falls in 

the range of 1.7 to 2.0. Let 1x  and 2x  denote the uncertain multiplication factors that 

define the ranges for the length of the weld (l) and the height of the weld (h), 

respectively. These multiplication factors are considered to be low, medium and high 

based on the following ranges: 
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1,2.=  ],92.0 ,85.0[ iLxi ==  

1,2.=  ],0.1 ,92.0[ iMxi ==  

1,2.=  ],1.1 ,0.1[ iHxi ==  

The available evidence is assumed to be of five different types or forms as indicated in 

Table 4.8 to illustrate the applicability of each of the five different models for combining 

the evidences. Let 321 ,, sss  and 4s represent four different sources of evidence that 

provide information in each of the five cases. The mathematical formulation of the 

problem is used in formulating the five different evidence sets to some extent and the rest 

can be attributed to ignorance about the credibility of the source. The number of sources 

in each evidence set is assumed to be four. The number of available sources for 

combining evidence using rules such as Inagaki and Zhang rules is limited to two in the 

available literature. In this work, four sources are assumed which increases the 

complexity involved to combining the evidences. The results of calculation and the 

subsequent comparison of the various parameters associated with the evidence sets given 

in Table 4.8 are shown in Tables 4.9 and 4.10. In Table 4.9, 1k , 2k  and 3k  represent Ik  in 

Eq. (4.3) when combining the bodies of evidence from sources 1s and 2s , 2s and 3s , and 

3s and 4s , respectively. If the values of Ik  are less than 0.4, then the extent of conflict is 

assumed to be low, and the current analysis is done on the evidence sets to find the nature 

of evidences such as conflicting, similar, etc. 
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Table 4.8 Five sets of evidence 
 

Evidence 

Set  No. 
Evidence 

1 

15.0}{,1.0){,55.0}{,    ,: s
1.0}{,2.0){,6.0}{,  ,  :

1.0}{,2.0){,5.0}{,  ,:
1.0){,8.0}{,  ,:

214

213

212

211

=====
=====

=====
====

IIImIImImMorLxLx
IIImIImImHxMorLxs

IIImIImImHxLxs
IImImLxLxs

 

2 

2.0){,7.0}{,    ,:
25.0){,6.0}{,  ,  :

3.0}{,5.0){,  ,:s
4.0){,4.0}{,  ,:

214

213

212

211

====
====

====
====

IImImMorLxLxs
IImImHxMorLxs

IIImImHxLx
IImImLxLxs

 

3 

1.0}{,1.0){,6.0}{,    ,:
2.0){,6.0}{,  ,  :

2.0}{,4.0){,  ,: 
7.0}{,  ,:

214

213

212

211

=====
====

====
===

IIImIImImMorLxLxs
IImImHxMorLxs

IIImIImHxLxs
ImLxLxs

 

4 

2.0}{,1.0){,6.0}{,    ,: 
2.0){,6.0}{,  ,  :

1.0}{,2.0){,5.0}{,  ,:
1.0){,8.0}{,  ,:

214

213

212

211

=∪====
=∪===

==∪===
=∪=∪==

IIIIImIImImMorLxLxs
IIIIImImHxMorLxs

IIImIIIImIImHxLxs
IIIIImIIImLxLxs

 

5 

2.0}{,7.0}{,    ,:
1.0}{,2.0){,6.0}{,  ,  :

3.0}{,5.0){,1.0}{,  ,:
1.0){,8.0}{,  ,:

214

213

212

211

====
=====

=====
====

IIImImMorLxLxs
IIImIImImHxMorLxs

IIImIImImHxLxs
IImImLxLxs

 

 

In addition },{ 1Θm }{ 2Θm and }{ 3Θm represent the masses associated to the frame of 

discernment when combining the bodies of evidence from sources 1s and 2s , 2s and 3s , 
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and 3s and 4s , respectively. If these values are less than 0.04 then we call that they have 

low mass attributed to frame of discernment. 

 

Table 4.9 Various parameters calculated for all evidence sets 

Combination 

rule 

Evidence 

set-1 

Evidence 

set-2 

Evidence 

set-3 

Evidence 

set-4 

Evidence 

set-5 

Dempster’s      

 0.30 0.44 0.42 0.08 0.68 

 

 

0.37 

0.355 

0.38 

0.295 

0.40 

0.26 

0.36 

0.30 

0.62 

0.37 

Yager’s      

 0.02 0.04 0.12 0.02 0.01 

 

}{ 3Θm  

0.02 

0.02 

0.03 

0.015 

0.08 

0.04 

0.04 

0.02 

0.01 

0.01 

Inagaki’s      

Conflict Low High High Low High 

Frame of 

discernment 
Low Low High Low Low 

Zhang’s      

Intersection 

measure 
No No No Yes No 

Murphy’s 

 

 

0.37 

 

0.44 

 

0.42 

 

0.36 

 

0.68 

 

 

 

 

 

1k

2k

3k

}{ 1Θm

}{ 2Θm

),,max( 321 kkk
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Table 4.10 Selection criteria for all evidence sets 

Evidence 

Set No 
Inferences from the evidence 

Selected 

combination 

rule 

1 

k1 , k2 and k3 are low 

(k1 & k2) and (k2 & k3) are comparable to each other 

}{Θm is low compared to k1 , k2 and k3 

Intersections are not available 

Dempster’s 

2 

}{Θm are comparable to k1 , k2 and k3 

Max(k1,k2, k3) is high 

Evidence for all events is not available. i.e., less data. 

Intersections are not available 

Yager’s 

3 

}{Θm is high 

}{Θm are comparable to k1 , k2 and k3 

Intersections are not available 

Evidence for all events are available 

Inagaki’s 

4 

Intersections are available 

Evidences are given for shared events 

k1 , k2 and k3 are low 
Zhang’s 

5 

k1 , k2 and k3 are high 

highly conflicting evidence are available from different 

sources 

Intersections are not available 

}{Θm is very low 

Murphy’s 
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Case-1: Evidence type 1 

The four sources of evidence given by evidence set 1 (Table 4.8) indicate the situation 

where Dempster’s rule is the most suitable rule to combine evidence based on the 

inferences described in Table 4.10. As the Dempster’s combination rule is associative, 

the order of combination of the sources does not matter on the solution. The evidence 

from sources 1s and 2s are combined using Dempster’s rule using a procedure similar to 

the one described in the case of robbery example (in section 3.1), to obtain

,87142.0}{ =Im ,08571.0}{ =IIm  .02867.0}{and,01428.0}{ =Θ= mIIIm  Similarly, 

the evidence from sources 3s and 4s are combined using Dempster’s rule to obtain

,782946.0}{ =Im  ,108527.0}{ =IIm ,077519.0}{ =IIIm 031008.0}{and =Θm . By 

combining the combined evidences obtained from sources 1s & 2s and 3s & 4s  using 

DST, we obtain ,97376.0}{ =Im and ,00501.0}{,02004.0}{ == IIImIIm

.00117.0}{ =Θm The belief values are calculated as Bel{I} = m{I} = 0.97376, Bel{II} = 

m{II} = 0.02004 and Bel{III} = m{III}=0.00501. The plausibility values are calculated 

by using equation (3.10) as Pl{I} = 1 - Bel{II} - Bel{III} = 0.97494, Pl{II} = 0.02122 and 

Pl{III} = 0.00619. The belief and plausibility intervals for the factor of safety are 

tabulated in Table 4.11. 

 

Case-2: Evidence type 2 

The four sources of evidence given by evidence set 2 (Table 4.8) indicate the situation 

where Yager’s rule is the most suitable rule to combine evidence based on the inferences 

described in Table 4.10. As Yager’s rule is not associative in nature, we have to combine 

evidence from all sources at the same time using equation (4.8). A matlab program was 
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written using procedure similar to the one described for combining two sources of 

evidence in the case of the robbery example (in section 4.2.1), but for combining four 

evidences (from four different sources) to form four dimensional product bpa matrix 

(similar to Table A.1). Using Yager’s rule, we obtain ,2514.0}{ =Iq  ,0138.0}{ =IIq  

,0009.0}{ =IIIq  and .6611.0}{ =ΘYm  The belief values are calculated as Bel{I} = q{I} = 

0.2514, Bel{II} = q{II} = 0.0138 and Bel{III} = q{III} = 0.0009. The plausibility values 

are calculated by using equation (3.10) as Pl{I} = 1 - Bel{II} -  Bel{III} = 0.9853, Pl{II} = 

0.7477 and Pl{III} = 0.7348. The belief and plausibility intervals for the factor of safety 

are tabulated in Table 4.11. 

 

Case 3: Evidence type 3 

The four sources of evidence given by evidence set 3 (Table 4.8) indicate the situation 

where Inagaki’s extra rule is the most suitable rule to combine evidence based on the 

inferences described in Table 4.10.  As Inagaki’s extra rule is not associative in nature, 

we have to combine evidence from all sources at the same time using equation (4.8) in 

equation (4.23).  A matlab program was written using a procedure similar to the one 

described for combining two sources of evidence in the case of the robbery example (in 

section 3.3), but for combining four evidences (from four different sources) to form four 

dimensional product bpa matrix (similar to Table A.1). Using Inagaki’s extra rule, we 

obtain  ,0048.0}{ =ΘUm  ,5391.3=p  8890.0}{ =ImU  =}{IImU  ,0849.0  

.0212.0}{and =IIIImU The belief values are calculated as Bel{I} = { }ImU =0.8890, 

Bel{II} =0.0849 and Bel{III} =0.0212. The plausibility values are calculated by using 
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equation (3.10) as Pl{I} = 0.8938, Pl{II} = 0.0897 and Pl{III} = 0.0260. The belief and 

plausibility intervals for the factor of safety are tabulated in Table 4.11. 

 

Case 4: Evidence type 4 

The four sources of evidence given by evidence set 4 (Table 4.8) indicate the situation 

where Zhang’s rule is the most suitable rule to combine evidence based on the inferences 

described in Table 4.10. As Zhang’s rule is not associative in nature, we have to combine 

evidence from all sources at the same time using equation (4.32). A matlab program was 

written using a procedure similar to the one described for combining two sources of 

evidence in the case of the robbery example (in Appendix-A), but for combining four 

evidences (from four different sources) to form four dimensional product bpa matrix 

(similar to Tables A.1, A.2 and A.3). Using Zhang’s rule, we obtain ,7306.0}{ =Im  

,2514.0}{ =IIm  ,0087.0}{ =IIIm  ,0028.0}{ =∪ IIIm  ,0057.0}{ =∪ IIIIIm  

,00035.0}{ =∪ IIIIm  and .000356.0}{ =Θm  The belief and plausibility values are 

calculated as Bel{I} = 0.7306, Bel{II} = 0.2514 and Bel{III} = 0.0087. The plausibility 

values are calculated by using equation (3.10) as Pl{I} = 1 - Bel{II} - Bel{III} - Bel{ 

IIIII ∪ } = 0.7342, Pl{II} = 0.2603 and Pl{III} = 0.0151. The belief and plausibility 

intervals for the factor of safety are tabulated in Table 4.11. 

 

Case 5: Evidence type 5 

The four sources of evidence given by evidence set 5 (Table 4.8) indicate the situation 

where Murphy’s rule is the most suitable rule to combine evidence based on the 

inferences described in Table 4.10. The evidences from source 321 ,, sss  and ns are 
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combined using Murphy’s rule to obtain the average bpas as ,55.0}{ =Im  

,15.0}{,2.0){ == IIImIIm and 1.0}{ =Θm . Now, apply Dempster’s rule to the overall 

combined bpa (using a procedure similar to the one described for the robbery example (in 

Appendix-A). As four evidences from four different sources are added, we use 

Dempster’s rule 3 times to obtain ,93744.0}{ =Im  ,04204.0){ =IIm  ,0200.0}{ =IIIm  

and .000525.0}{ =Θm  The belief and plausibility intervals for the factor of safety are 

tabulated in Table 4.11. 

 

4.5 RESULTS 

The belief and plausibility intervals for the factor of safety for all five evidence 

sets are tabulated in Table 4.11. If all the combination rules are applied to all the evidence 

sets (Table 4.8) without following the selection procedure described in section 4.3 (to 

apply just one particular most suitable combination rule) then we obtain five different 

solutions (belief interval for the factor of safety) for each evidence set. All the results are 

tabulated in Table 4.12.   
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Table 4.11 Belief Interval for factor of safety (FS) 

Evidence Set No. FS Belief Interval 

Evidence set 1 

FS = {I} 0.97377 0.97494 

FS = {II} 0.02004 0.02122 

FS = {III} 0.00501 0.00619 

Evidence set 2 

FS = {I} 0.2514 0.9853 

FS = {II} 0.0138 0.7477 

FS = {III} 0.0009 0.7348 

Evidence set 3 

FS = {I} 0.8890 0.8938 

FS = {II} 0.0849 0.0897 

FS = {III} 0.0212 0.0260 

Evidence set 4 

FS = {I} 0.7306 0.7342 

FS = {II} 0.2514 0.2603 

FS = {III} 0.0087 0.0151 

Evidence set 5 

FS = {I} 0.93744 0.93796 

FS = {II} 0.04204 0.04256 

FS = {III} 0.02000 0.02053 
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Table 4.12 Comparison of various combination rules applied on all evidence sets 

 
Rule Evidence set-1 Evidence set-2 Evidence set-3 Evidence set-4 Evidence set-5 

Dempster’s  
m(I) 
m(II) 
m(III) 

0.97377 0.97494 
0.02004 0.02122 
0.00501 0.00619 

 

0.87090 0.87527 
0.11816 0.12254 
0.00656 0.01094 

 

0.91819 0.91885 
0.07003 0.07068 
0.01113 0.01178 

 

0.62374 0.63636 
0.32828 0.35354 
0.02146 0.03788 

 

0.91819 0.91885 
0.07003 0.07068 
0.01113 0.01178 

 

Yager’s  
m(I) 
m(II) 
m(III) 

0.3304 0.9915 
0.0068 0.6679 
0.0017 0.6628 

 

0.2514 0.9853 
0.0138 0.7477 
0.00090 0.73480 

 

0.2512 0.9700 
0.0240 0.7428 
0.0060 0.7248 

 

0.1976 0.8848 
0.1040 0.7952 
0.0068 0.6952 

 

0.1007 0.9942 
0.0035 0.8970 
0.0023 0.8958 

 

Inagaki’s  
m(I) 
m(II) 
m(III) 

0.9745 0.9749 
0.0201 0.0205 
0.0050 0.0054 

 

0.9442 0.9448 
0.0518 0.0524 
0.0034 0.0040 

 

0.8890 0.8938 
0.0849 0.0897 
0.0212 0.0260 

 

0.6243 0.6360 
0.3286 0.3530 
0.0215 0.0370 

 

0.9454 0.9455 
0.0329 0.0330 
0.0216 0.0217 

 

Zhang’s  
m(I) 
m(II) 
m(III) 

0.9917 0.9918 
0.0074 0.0075 
0.0008 0.0009 

 

0.9826 0.9828 
0.0169 0.0171 
0.0003 0.0004 

 

0.9442 0.9477 
0.0461 0.0496 
0.0062 0.0097 

 

0.7306 0.7342 
0.2514 0.2603 
0.0087 0.0151 

 

0.9829 0.9829 
0.0105 0.0106 
0.0066 0.0066 

 

Murphy’s  
m(I) 
m(II) 
m(III) 

0.96906 0.97052 
0.02180 0.02326 
0.00768 0.00913 

 

0.92030 0.92279 
0.06831 0.07081 
0.00890 0.01139 

 

0.86068 0.87652 
0.09775 0.11360 
0.02573 0.04157 

 

0.58050 0.62222 
0.34304 0.39543 
0.02123 0.03889 

 

0.93744 0.93796 
0.04204 0.04256 
0.02000 0.02053 
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Analysis of the results of the welded beam problem given by the various combination 

rules: 

1. In the evidence set-1, there is high evidence available from all sources for m{I} 

and hence belief for {I} should be high. This is exactly the one followed using 

Dempster’s rule as the best rule to be applied for this evidence set. 

2. In the evidence set-2, there is less evidence or data available from all sources and 

hence ignorance/uncertainty is high. This indicates that plausibility should be high 

apart from a large belief interval. This is exactly the one followed using Yager’s 

rule as the most suitable rule to be applied for this evidence set. 

3. In the evidence set-3, even though the 2nd source has no evidence for {I} but all 

the other sources state that a high evidence is available for {I}. There is one bpa 

from the 1st source and all three bpas are from 4th

4. In the evidence set-4, there is evidence for more than one event combined and 

hence the cardinality for the events is found to be more than one. Hence, the best 

rule for this evidence set is Zhang’s rule. 

 source. This nature of evidence 

set is most suitable for use of Inagaki’s rule to get the belief intervals. 

5. In the evidence set-5, the 2nd source of evidence is totally conflicting with the 

other sources for the evidence given to {I}. The other sources, namely the 1st, 3rd 

and 4th

 

 sources, haven high evidence for {I} and there is no reliability information 

for the sources. The best rule for this nature of evidence, where evidence from 

each source is to be preserved in finding the final combined evidence is none 

other than the Murphy’s average combination rule. 
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4.6 COMBINING DIFFERENT FORMS OF EVIDENCE 

We consider five aspects of a car namely control and stability (brakes), comfort 

(suspension), power train design (drive), body style and Interior (cab design) and features 

& accessories (features) and assume different forms of evidence as tabulated in Tables 

4.13 to 4.22.  

Table 4.13 Different various forms of evidence, reliability and cost for the brakes 
 

Brakes I II III IV V 

JD rating 2.5 3 4 4.5 3.5 

Customer review Poor Average Poor Better Good 

Probability of 
survival from the 

manufacture 

0.96 0.97 0.98 0.98 0.97 

reliability 0.90 0.92 0.98 0.99 0.96 

cost 200 220 265 280 250 

 

Evidence in the form of bpa for the brakes is assumed as tabulated in Table 4.14. 

Table 4.14 Evidence in the form of bpa for the brakes 
 

Life Evidence 

for brakes I 

Evidence 

for brakes 

II 

Evidence 

for brakes 

III 

Evidence 

for brakes 

IV 

Evidence 

for brakes 

V 

< 3 years 0.2 0.1 0.1 - 0.2 

3-5 years 0.4 0.2 0.1 - 0.1 

> 5 years 0.2 0.4 0.7 0.7 0.5 
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Table 4.15 Different various forms of evidence, reliability and cost for the 
suspension 

 

Suspension I II III IV V 

JD rating 3.5 4 4 4.5 2.5 

Customer review Poor Better Average Better Average 

Failure 
probability from 

manufacture 

0.95 0.97 0.96 0.98 0.92 

reliability 0.94 0.95 0.92 0.96 0.90 

cost 440 460 415 500 400 

 

Evidence in the form of bpa for the suspension is assumed as tabulated in Table 4.16. 

Table 4.16 Evidence in the form of bpa for the suspension 
 

Life Evidence 
for 

suspension 
I 

Evidence 
for 

suspension 
II 

Evidence 
for 

suspension 
III 

Evidence 
for 

suspension 
IV 

Evidence 
for 

suspension 
V 

< 3 years 0.2 0.2 0.1 0.1 0.2 

3-5 years 0.1 0.1 0.2 - 0.1 

> 5 years 0.5 0.5 0.6 0.8 0.4 
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Table 4.17 Different various forms of evidence, reliability and cost for the drive 
 

Drive I II III IV V 

JD rating 3 4 4.5 3 4 

Customer review Good Average Poor Good Better 

Failure 
probability from 

manufacture 

0.95 0.97 0.98 0.96 0.98 

reliability 0.93 0.90 0.88 0.95 0.98 

cost 290 260 250 330 380 

 

Evidence in the form of bpa for the drive is assumed as tabulated in Table 4.18. 

Table 4.18 Evidence in the form of bpa for the drive 
 

Life Evidence 
for drive I 

Evidence 
for drive II 

Evidence 
for drive III 

Evidence 
for drive IV 

Evidence 
for drive V 

< 3 years - - 0.4 0.2 - 

3-5 years 0.1 0.2 0.1 - 0.1 

> 5 years 0.6 0.5 0.2 0.5 0.8 
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Table 4.19 Different various forms of evidence, reliability and cost for the cab 
design 

 

Cab design I II III IV V 

JD rating 3.5 3 2.5 4.5 4 

Customer review Average Poor Poor Better Good 

Failure 
probability from 

manufacture 

0.92 0.90 0.85 0.98 0.95 

reliability 0.90 0.85 0.88 0.95 0.92 

cost 325 300 310 400 450 

 

Evidence in the form of bpa for the cab design is assumed as tabulated in Table 4.20. 

Table 4.20 Evidence in the form of bpa for the cab design 
 

Life Evidence 
for cab 
design I 

Evidence 
for cab 

design II 

Evidence 
for cab 

design III 

Evidence 
for cab 

design IV 

Evidence 
for cab 

design V 
< 3 years - 0.1 0.2 - 0.1 

3-5 years 0.1 0.2 - 0.1 - 

> 5 years 0.6 0.5 0.5 0.7 0.7 
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Table 4.21 Different various forms of evidence, reliability and cost for the features 
 

Features I II III IV V 

JD rating 3 2.5 4 4.5 3 

Customer review Average Poor Better Better Average 

Failure 
probability from 

manufacture 

0.9 0.85 0.95 0.90 0.88 

reliability 0.93 0.9 0.96 0.97 0.94 

cost 240 220 280 300 250 

 

Evidence in the form of bpa for the features is assumed as tabulated in Table 4.22. 

Table 4.22 Evidence in the form of bpa for the features 
 

Life Evidence 
for the 

features I 

Evidence 
for the 

features II 

Evidence 
for the 

features III 

Evidence 
for the 

features IV 

Evidence 
for the 

features V 
< 3 years - 0.2 0.1 0.1 0.2 

3-5 years 0.3 - 0.1 0.3 0.2 

> 5 years 0.5 0.6 0.7 0.4 0.5 

 

 

As we know the JD power ratings are given on the scale of 5. The unit of cost is dollars. 

We assume reasonable credibilities for each source. Let us assume credibility = 0.9 for 

JD power rating. (experts). For example, the bpa for the brakes (type-I), the JD power 

rating is equal to 0.9×0.5  (= 0.45). Let us assume credibility = 0.5 for custom review (not 

experts) and corresponding bpas are indicated in Table 4.23.  
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Table 4.23 Equivalent evidence for customer review for various sub-systems of car 
 

Rating Interval range bpa 

Poor 0-0.3 0.15 

Average 0.4-0.5 0.25 

Good 0.6-0.7 0.325 

Better 0.8-1.0 0.45 

 

For example, the bpa for the brakes (Type-I) from customer reviews is equal to   0.5*[0, 

0.3]. Thus, the average value for bpa = 0.15. Let us assume credibility = 1 for probability 

of survival from the manufacture for life greater than 5 years and also assume credibility 

= 1 for the source where evidence are given in the form of bpas. The procedure to 

compute the combined evidence for life greater than 5 years for the brakes (Type-I), 

suspension (Type-I), drive (Type-I), cab design (Type-I) and features (Type-I) are 

summarized as follows. 

2.0}{and2.0}{,4.0){,2.0}{: E
04.0}{,96.0}{:
85.0}{,15.0}{:
55.0}{,45.0}{:

4

3

2

1

=Θ===
=Θ=
=Θ=
=Θ=

mIIImIImIm
mIIImE
mIIImE
mIIImE

 

2.0}{and5.0}{,1.0){,2.0}{: E
05.0}{,95.0}{:
85.0}{,15.0}{:
37.0}{,63.0}{:

4

3

2

1

=Θ===
=Θ=
=Θ=
=Θ=

mIIImIImIm
mIIImE
mIIImE
mIIImE
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3.0}{and6.0}{,1.0){: E
05.0}{,95.0}{:

675.0}{,325.0}{:
46.0}{,54.0}{:

4

3

2

1

=Θ==
=Θ=

=Θ=
=Θ=

mIIImIIm
mIIImE

mIIImE
mIIImE

 

3.0}{and6.0}{,1.0){: E
08.0}{,92.0}{:
75.0}{,25.0}{:
37.0}{,63.0}{:

4

3

2

1

=Θ==
=Θ=
=Θ=
=Θ=

mIIImIIm
mIIImE
mIIImE
mIIImE

 

2.0}{and5.0}{,3.0){: E
1.0}{,9.0}{:

75.0}{,25.0}{:
46.0}{,54.0}{:

4

3

2

1

=Θ==
=Θ=

=Θ=
=Θ=

mIIImIIm
mIIImE

mIIImE
mIIImE

 

Similarly, we have obtained the evidences for other types namely Type-II, Type-III, 

Type-IV, and Type-V for each sub-system of the car.. These evidences from four 

different sources for each type and for each sub-system are used in the matlab program to 

combine the evidence. We can observe the conflict between the JP rating and the 

customer reviews for the brakes Type-III, suspension Type-V and drive Type-III when 

compared to the other types in their respective sub-system category. We can observe 

partial evidences from different bodies of evidence obtained from different sources. We 

can also observe that the bpas associated with the frame of discernment is comparable to 

the sum of the masses of all focal elements in the body of evidence. When the analysis is 

conducted from the point of view of the safety of the system, by using the selection 

procedure described in section 4.3, Yager’s combination rule is best suited to combine 

these four different types of evidence for each type of the sub-system of the car. We can 

also observe the bpas associated with the frame of discernment is high or comparable to 
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all other evidences. When the analysis is conducted from the point of view of the failure 

of the system, by using the selection procedure described in section 4.3, Inagaki’s 

combination rule is best suited combination rule to combine these four different types of 

evidence for each type of the sub-system of the car. The belief interval obtained from the 

matlab program (used in section 4.4) is used in the discrete modified PSO matlab 

program. Now, for combining evidence from each sub-system level to the overall system 

level, we use DST rule successively four times to combine these resulting combined bpas 

to get belief for the life greater than 5 years. All these sub-systems form a series system. 

We assumed reliabilities for each type of the sub-system and their associated cost as 

tabulated in Tables 4.13, 4.15, 4.17, 4.19 and 4.21. The cost is assumed to vary 

increasingly non-linear with respect to its reliability with theoretically reaching cost to 

infinite when reliability is equal to 1. The belief is maximized to solve a discrete 

optimization problem to find one particular type of each sub-system of the car to have 

maximum performance ratings with design space of 55

Maximize belief subject to TC ≤ 1500 and TR ≤ 0.75. 

 = 3125 discrete points with 

reliability range from 0.545 to 0.867 and the total cost vary from $1370 to $1860. An 

optimization problem thus formulated to maximize the belief for the car to have life 

greater than 5 years with constraints on total cost and total reliability of the car as 

follows. 

This problem is solved by using two different analysis types namely case 1 using Yager’s 

rule and case 2 using Inagaki’s rule to combine evidence at sub-system level for each 

type. We used modified PSO algorithm to solve this optimization problem along with 

Dempster’s and yager’s rule of combined evidence program in the developed matlab 
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program to solve this problem. These optimization problems are solved to combine 

evidences at the sub-system level and the system level. For the PSO parameters, namely, 

population size = 12, imax 21 cc == 800, = 2, iwmax= 0.9, iwmin

4and1 maxmax == if VV


= 0.4, 

 for all i, stopping convergence criterion (in terms of change in the 

objective function value) = 10-8

Table 4.24 Optimal solutions for combination of evidence for the car 

 for over 350 continuous iterations. The optimum 

solutions are obtained using the above described matlab program and tabulated in Table 

4.24.  We have observed that the total reliability of the car has decreased when we use 

Inagaki’s rule at the sub-system level as expected. The selection of particular types for 

sub-systems like brakes, drive and cab design are changed compared to the optimum 

solution obtained when we use Yager’s rule for combination of evidence at sub-system 

level. The optimum solutions obtained for both cases have an active constraint for the 

cost. 

 
Optimal solution Case 1 Case 2 

Brakes  

Suspension  

Drive  

Cab design  

Features  

Total cost 

Total Reliability  

Type-IV 

Type-III 

Type-II 

Type-I 

Type-II 

$ 1500 

0.6639 

Type-III 

Type-III 

Type-III 

Type-V 

Type-II 

$ 1500 

0.6569 
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4.7 SUMMARY 

  This chapter studied various combination rules to combine evidence from 

multiple sources to understand the procedure of combining evidence in depth and how 

the conflict among the evidence can be treated. The proposed selection procedure 

described in section 4.3 guides the user or analyst to select the most suitable combination 

rule to combine various evidences obtained from multiple sources based on the nature of 

the evidence sets. At the same time, it will not restrict from the application of other rules 

for combining evidences. Evidence sets (Table 4.8) are constructed in such a way that the 

applied combination rule gives the most satisfactory/logical results compared to the other 

combination rules (in each of the five cases described in section 4.4). For these cases, 

described in the section 4.4, if the combination rules, which are not suggested as the most 

suitable one, are used for combining evidence then they can give misleading results and 

may not convergence to the actual reality when more and more evidence/information 

becomes available. In the next chapter, the DST methodology to combine evidence when 

sources of evidence have different credibilities is considered. 
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CHAPTER 5 
 

DEMPSTER-SHAFER THEORY FOR THE SAFETY 
ANALYSIS OF UNCERTAIN ENGINEERING SYSTEMS 

 
 

5.1 OVERVIEW 

A methodology for the safety analysis of uncertain engineering systems in the 

presence of multiple sources of evidence based on Dempster-Shafer Theory (DST) is 

presented. DST can be used when it is not possible to obtain a precise estimation of 

system response due to the presence of multiple uncertain input parameters. The 

information for each of the uncertain parameters is assumed to be available in the form of 

interval-valued data from multiple sources implying the existence of large epistemic 

uncertainty in the parameters [74,114]. The vertex method, described in section 5.2, is 

used to reduce the widening of the function value set due to multi-occurrences of 

variables when interval analysis is used in finding the response function of the system [9, 

44]. It is followed by a computation procedure to find belief and plausibility functions 

using vertex method in section 5.3. The safety analysis of a welded beam with two and 

four uncertain parameters, when uncertain parameters are assumed to be available in the 

form of interval-valued data from multiple sources, is considered in section 5.4. A new 

method, called Weighted Dempster Shafer Theory for Interval-valued data (WDSTI), is 

proposed in section 5.5, for combining evidence when different credibilities are 

associated with different sources of evidence. The application of the methodology is 

illustrated by considering the safety analysis of a welded beam in the presence of two and 
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four multiple uncertain parameters and in presence three sources of evidence. The chapter 

concludes with a discussion and a summary in the penultimate and end sections. 

 

5.2 VERTEX METHOD [61] 

When ),......,,,( 321 nxxxxfy =  is continuous in the n-dimensional rectangular 

region with no extreme points in the region (including the boundaries), then the interval 

value of the function can be obtained as 

NjcfcfXXXfY jjjjn ,....,2,1  ,))((max)),((min    ),......,,( 21 =



==      (5.1) 

where jc  denotes the ordinate of the j-th vertex. If m extreme points kE (k = 1, 

2,……,m), exist among the vertices, then Eq. (5.1) is to be modified as 





= ))(),((max)),(),((min

,, kjkjkjkj
EfcfEfcfY        (5.2) 

The vertex method is based on the α -cut concept and interval analysis. The α -

cut is a discretization technique on membership value domains of uncertain variables 

instead of on the domains of the variables themselves. The vertex method reduces the 

widening of the function value set due to multi-occurrences of a variables when interval 

analysis is implemented on the expression of the function. 

 

5.3 COMPUTATION OF BELIEF AND PLAUSIBILITY FUNCTIONS 

The following procedure can be used to determine the belief and plausibility 

functions.  

1. Use DST or Zhang’s rule corresponding to Dempster’s rule (i.e., when |C| = |A||B|) 

to combine the evidences that are available in the form of interval valued data.  



www.manaraa.com

121 
 

 
 

2. Find bpa’s as simple products of the evidences. 

3. Let the sum of all the bpa’s be n. Using the normalization factor 1/n, each of the 

bpa’s is multiplied by 1/n. 

4. The number of uncertain parameters used to find the combined evidence 

determines the dimensionality of the product table of bpas. 

5. Apply DST to combine the bpa values obtained in step 4. 

6. Calculate the belief and plausibility functions using the vertex method [40]. A 

matlab program has been developed for this purpose in this work. 

 

5.3.1 Computational aspects of the vertex method: 

The following step-by-step procedure is used to implement the vertex method for 

determining the belief and plausibility functions: 

1. Initialize the interval ranges of the uncertain parameters as ,......., 21 nXXX  and the 

corresponding bpa’s as nYYY ........, 21 respectively where ‘n’ is the number of uncertain 

parameters. 

2. Construct the bpa product table using nYYY ........, 21  and store the result in a matrix A 

where ‘n’ represent the dimensionality of A 

3. Each element of A, corresponding to the interval ranges of nXXX ......., 21 , represents a 

n-sided hyper cube where each vertex denotes a different combination of the values of the 

uncertain parameters. 

4. The belief is calculated as the sum of the bpa’s (or elements of A) corresponding to n-

sided hyper cube where the response function evaluated at each vertex is less than the 

limit value of the response (or output) function. 
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5. The plausibility is calculated as the sum of all those bpa’s from the matrix A that not 

only correspond to the belief but also any n-sided hyper cube for which any of its vertices 

has a function value less than the limit value of the output/response function. 

6. The number of function evaluations can be optimized (minimized) in the computation 

of plausibility in identifying the function values at the vertices of the n-sided hyper cube 

that has values less than the limit value of the response function. 

 

5.4 SAFETY ANALYSIS OF A WELDED BEAM  

The failure/safety analysis of the welded beam described in section 4.4 of chapter 

4 is considered. The beam is considered unsafe if the maximum shear stress in the weld is 

greater than 9066.67 2/ inlb (= 5.1/600,13SafetyofFactor/max =τ ). The nominal (input) 

data is P = 6000 lb, L = 14 in., psi1030 6xE = , in25.0 , psi000,30 maxmax == δσ ,

psi600,13max =τ , h = 0.2455 in. , l = 6.196 in. , b = 0.2455 in. and t = 8.273 in..  

The safety analysis of the welded beam is investigated for two cases. In the first case, the 

beam is assumed to have two uncertain parameters while four uncertain parameters are 

assumed in the second case. The nondeterministic character of the system is due to the 

presence of uncertainty in the parameters embodied in the mathematical model of the 

welded beam.  

Figure 5.1 shows a three-dimensional representation of the shear stress induced in the 

weld,τ , over the range of possible values of  1x  and 2x  with several level curves, or 

response contours of τ . The rectangle defined by 0.7 ≤ x1 ≤ 1.3 and 0.8 ≤ x2 ≤ 1.3 is 

referred to as the input product space. Figure 5.2 shows the limit shear stress contour in 

the x1- x2 τ plane for  = 9066.67 2/ inlb  in the weld. 



www.manaraa.com

123 
 

 
 

 

Figure 5.1 Representation of shear stress (τ ) in the weld in the range 0.7 ≤ x1 ≤ 1.3 
and 0.8 ≤ x2

 
 ≤ 1.3 
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Figure 5.2 Contour of the shear stress in the weld (τ ) in the range 0.7 ≤ x1 ≤ 1.3 and 
0.8 ≤ x2

 
 ≤ 1.3 

 

5.4.1 Analysis with two uncertain parameters 

The length of the weld (l) and the height of the weld (h) are treated as the 

uncertain parameters. The beam is considered unsafe if this maximum shear stress is 

greater than 9066.67 2/ inlb . Let 21  and xx be the multiplication factors that denote the 

uncertainties of the parameters l and h, respectively. It is assumed that two sources of 

evidence (experts) provide the possible ranges (intervals) of 21  and xx along with the 

corresponding bpa’s as indicated in Table 5.1. 
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Table 5.1 Evidences for the uncertain parameters 
 

x

Expert1 

1 

(Evidence1) 

(S1) 

Interval [0.7,0.8] [0.8,1.1] [1.0,1.2] [1.2,1.3] 

Bpa 0.1 0.4 0.4 0.1 

Expert2 

(Evidence2) 

(S2) 

Interval [0.7,0.9] [0.8,1.0] [1.0,1.2] [1.1,1.3] 

Bpa 0.1 0.4 0.3 0.2 

x

Expert1 

2 

(Evidence1) 

(S1) 

Interval [0.8,0.9] [0.9,1.1] [1.0,1.2] [1.2,1.3] 

Bpa 0.1 0.4 0.4 0.1 

Expert2  

(Evidence2) 

(S2) 

Interval [0.7,0.9] [0.9,1.0] [1.0,1.2] [1.1,1.3] 

Bpa 0.2 0.4 0.2 0.2 

 

The belief and plausibility are computed as follows: 

Step 1:  Find the intersections of intervals for the uncertain variable  1x from the two 

sources of evidence (experts) as shown in Table 5.2: 
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Table 5.2 Combined interval ranges of  1x  

 
    Expert 2 

  Interval [0.7,0.9] [0.8,1.0] [1.0,1.2] [1.1,1.3] 

Expert 1 

[0.7,0.8] [0.7,0.8]       

[0.8,1.1] [0.8,0.9] [0.8,1.0] [1.0,1.1]   

[1.0,1.2]     [1.0,1.2] [1.1,1.2] 

[1.2,1.3]       [1.2,1.3] 

 

Step 2: Find the bpa for the interval ranges calculated in Step1 as indicated in Table 5.3: 

 

Table 5.3 Combined bpa values of  1x  
 

    Expert 2 

    Interval [0.7,0.9] [0.8,1.0] [1.0,1.2] [1.2,1.3] 

  Interval 

Bpa 

(m) 0.1 0.4 0.3 0.2 

Expert 1 [0.7,0.8] 0.1 0.01       

[0.8,1.1] 0.4 0.04 0.16 0.12   

[1.0,1.2] 0.4     0.12 0.08 

[1.1,1.3] 0.1       0.02 
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Step 3:  Find the normalization factor for x1

∑m

 as shown in Table 5.4 and scale the bpa’s to 

obtain =1. Use a similar procedure for 2x  and combine the evidences for both 

21  and xx as shown in Table 5.5. 

 

Table 5.4 Normalization factor of  1x  

 
x1 

Interval M 

[0.7,0.8] 0.01 

[0.8,0.9] 0.04 

[0.8,1.0] 0.16 

[1.0,1.1] 0.12 

[1.0,1.2] 0.12 

[1.1,1.2] 0.08 

[1.2,1.3] 0.02 

∑m  0.55 
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Table 5.5 Combined normalized evidence (bpas) from experts 1 and 2 of  1x  and 2x  
 

x x1 2 

Interval m Interval m 

[0.7,0.8] 0.01818 [0.8,0.9] 0.04545 

[0.8,0.9] 0.07272 [0.9,1.0] 0.3636 

[0.8,1.0] 0.29091 [1.0,1.1] 0.1818 

[1.0,1.1] 0.21818 [1.0,1.2] 0.1818 

[1.0,1.2] 0.21818 [1.1,1.2] 0.1818 

[1.1,1.2] 0.14545 [1.2,1.3] 0.04545 

[1.2,1.3] 0.03636   

 

Step 4: Since there are two uncertain parameters in the problem, the dimensionality of the 

bpa product table is 2. Apply DST for the evidences obtained for 1x  and 2x  to find the 

bpa product table of order 7 x 6 as shown in Table 5.6. 
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Table 5.6 Bpa product table of 1x   and 2x  
 

x
x

1 
2 

[0.8,0.9] [0.9,1.0] [1.0,1.1] [1.0,1.2] [1.1,1.2] [1.2,1.3] 

Interval m 0.04545 0.3636 0.1818 0.1818 0.1818 0.04545 

[0.7,0.8] 0.01818 0.00083 0.00661 0.00331 0.00331 0.00331 0.00083 

[0.8,0.9] 0.07272 0.00331 0.02644 0.01322 0.01322 0.01322 0.00331 

[0.8,1.0] 0.29091 0.01322   0.10577 0.05289 0.05289 0.05289 0.01322 

[1.0,1.1] 0.21818 0.00992 0.07933 0.03967 0.03967 0.03967 0.00992 

[1.0,1.2] 0.21818 0.00992 0.07933 0.03967 0.03967 0.03967 0.00992 

[1.1,1.2] 0.14545 0.00661 0.05289 0.02644 0.02644 0.02644 0.00661 

[1.2,1.3] 0.03636 0.00165 0.01322 0.00661 0.00661 0.00661 0.00165 

 

Step 6: Use the vertex method to handle the two uncertain parameters represented by 

interval numbers to obtain an assessment of the likelihood of the maximum induced shear 

stress not exceeding the specified limit state value of 9066.67 2/ inlb  (using the matlab 

program developed in this work).  
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Table 5.7 Bpa product table of  1x  and 2x  represent matrix A 
 

x
x

1 
2 

[0.8,0.9] [0.9,1.0] [1.0,1.1] [1.0,1.2] [1.1,1.2] [1.2,1.3] 

Interval m 0.04545 0.3636 0.1818 0.1818 0.1818 0.04545 

[0.7,0.8] 0.01818 A(1,1) A(1,2) A(1,3) A(1,4) A(1,5) A(1,6) 

[0.8,0.9] 0.07272 A(2,1) A(2,2) A(2,3) A(2,4) A(2,5) A(2,6) 

[0.8,1.0] 0.29091 A(3,1) A(3,2) A(3,3) A(3,4) A(3,5) A(3,6) 

[1.0,1.1] 0.21818 A(4,1) A(4,2) A(4,3) A(4,4) A(4,5) A(4,6) 

[1.0,1.2] 0.21818 A(5,1) A(5,2) A(5,3) A(5,4) A(5,5) A(5,6) 

[1.1,1.2] 0.14545 A(6,1) A(6,2) A(6,3) A(6,4) A(6,5) A(6,6) 

[1.2,1.3] 0.03636 A(7,1) A(7,2) A(7,3) A(7,4) A(7,5) A(7,6) 

 

Belief is calculated as the sum of all bpas of matrix A whose corresponding hyper cube 

satisfies all the design constraints and maximum induced shear stress less than 9066.67

2/ inlb  using the procedure described in section 5.3. These bpas are indicated by italic 

letters in Table 5.7. Similarly, plausibility is calculated as the sum of all the bpas of the 

matrix for which atleast one vertex of the corresponding hyper cube satisfies the 

condition that the maximum induced shear stress is less than 9066.67 2/ inlb . These bpas 

are represented by both bold and italic letters in Table 5.7. This procedure is implemented 

in matlab program to obtain belief and plausibility values for the safety of the welded 

beam. 

If the program is not optimized for the number of function evaluations, the required 

number of function evaluations using the vertex method would be 168)6)(7)(2( 2 =  to 



www.manaraa.com

131 
 

 
 

find the belief and plausibility for realizing the maximum induced shear stress to be less 

than the limit value 9066.67 2/ inlb . In the optimized program, when computing 

plausibility, we do not evaluate function values (maximum induced shear stress) at all 

other vertices of the hypercube once the program finds atleast one vertex that corresponds 

to a function value less than 9066.67 2/ inlb  and atleast one vertex with a function value (

τ ) greater than 9066.67 2/ inlb . When the current procedure/program is optimized, the 

number of function evaluations required is 166. Thus, a reduction of 1.19% function 

evaluations is achieved by the program. This reduction increases with an increase in the 

number of uncertain input parameters and/or an increase in the number of interval data 

for the uncertain input parameters. The numerical results indicate a belief of 0.67515 and 

a plausibility of 0.98927 (for the maximum shear stress less than 9066.67 2/ inlb ). Thus 

the degree of plausibility, 0.98927, is the maximum limit state violation for the design 

while there is atleast 0.67515 belief for a safe design. The belief and plausibility are 

nothing but lower and upper bounds on the unknown probability. The DST, thus, 

indicates that the probability of a safe design with <τ  9066.67 2/ inlb will be as low as 

0.67515 and as high as 0.98927 with the given body of evidence.  
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Table 5.8 Evidences for the uncertain parameters 1x and 2x  

 

Interval 

x1 x2 

Expert1 Expert2 Expert1 Expert2 
(Evidence1)                                        

(S1) 
(Evidence2)                                        

(S2) 
(Evidence1)                                        

(S1) 
(Evidence2)                                        

(S2) 
Bpa Bpa Bpa Bpa 

[0.85,0.86] 0.02 0.03 0.03 0.04 
[0.86,0.87] 0.04 0.03 0.05 0.05 
[0.87,0.88] 0.04 0.04 0.04 0.05 
[0.88,0.89] 0.05 0.05 0.05 0.04 
[0.89,0.90] 0.06 0.05 0.04 0.04 
[0.90,0.91] 0.06 0.07 0.08 0.07 
[0.91,0.92] 0.08 0.08 0.08 0.08 
[0.92,0.93] 0.09 0.1 0.1 0.1 
[0.93,0.94] 0.11 0.1 0.09 0.08 
[0.94,0.95] 0.09 0.09 0.1 0.11 
[0.95,0.96] 0.06 0.05 0.08 0.08 
[0.96,0.97] 0.05 0.05 0.05 0.05 
[0.97,0.98] 0.06 0.06 0.06 0.06 
[0.98,0.99] 0.04 0.04 0.04 0.04 
[0.99,1.00] 0.05 0.05 0.05 0.05 
[1.00,1.01] 0.04 0.04 0.03 0.02 
[1.01,1.02] 0.04 0.05 0.02 0.03 
[1.02,1.03] 0.02 0.02 0.01 0.01 

 

 

The procedure described above is also applied to another set of evidence as shown 

in Table 5.8. For this data, the belief and plausibility values for the maximum induced 

shear stress less than 9066.67 2/ inlb   are computed as 0.61767 and 0.766872, 

respectively. If the program is not optimized for the number of function evaluations, the 

required number of function evaluations using the vertex method would be

1296)18)(18)(2( 2 =  to find the belief and plausibility. When the current 

procedure/program is optimized, the number of function evaluations required is 1290. 

Thus, a reduction of 0.46% in function evaluations is achieved by the program. 
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The use of the vertex method is justified to overcome the complexity involved in the 

mathematical formation of the welded beam. The equations to find the interval (range) of 

the maximum induced shear stress can be rewritten in the form: 

2
intintint

2
intint )''(cos'''2)'( τθττττ ++=         (5.3) 

where  
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where ],[ ba ll and ],.[ ba hh  are the intervals (range) of the uncertain parameters, namely, 

the length of the weld and height of the weld. The subscript int is used in Eqs. (5.3) – 

(5.6) to represent the interval for the corresponding parameters in Eqs. (4.33) - (4.36). 

The computation of the interval of the induced shear stress becomes tedious with large 

values of the uncertain parameters (when combinatorial approach is used). 

 

5.4.2 Analysis with four uncertain parameters 

The failure/safety analysis of the welded beam is considered using four uncertain 

parameters to find the maximum induced shear stress developed in the weld. As in the 

previous case, the welded beam is considered unsafe if the maximum shear stress exceeds 
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9066.67 2/ inlb . 4321  and ,, xxxx are assumed to be the multiplication factors for the four 

uncertain parameters, namely the depth of the beam (t), length of the beam (L), weld 

length (l) and height of the weld (h), respectively. Evidences from two sources (experts 1 

and 2) are assumed to be available in the form of intervals of the uncertain parameters as 

shown in Table 5.9. The credibility of each of the two sources of evidence is assumed to 

be equal to 1. 

The maximum induced shear stress in the weld is calculated using Eqs. (4.33) and (5.3). 

In this case, the Matlab program considers four uncertain parameters, denoted in the form 

of interval numbers, to assess the likelihood that the maximum induced shear stress does 

not exceed the limit state value of 9066.67 2/ inlb . If the Matlab program is not optimized 

for the number of function evaluations then the required number of function evaluations 

using the vertex method, to find the belief and plausibility will be

1679616)18)(18)(18)(18)(2( 4 = . The present optimized program required 1543072 

function evaluations. Thus, a reduction of 8.12% in function evaluations has been 

achieved by the optimized program. The numerical results indicate that the belief is 

0.521151  and the plausibility is 0.730883 for a safe design.  This shows that the degree 

of plausibility of 0.730883 is the maximum limit state violation for the design while there 

is atleast 0.521151 belief for the safe design. The belief and plausibility denote the lower 

and upper bounds on an unspecified probability. Thus, the probability of safety, <τ

9066.67 ,/ 2inlb can be as low as 0.521151 and as high as 0.730883 in the presence of 

given (assumed) body of evidence. This is evident from the present results that the belief 

intervals (difference between belief and plausibility) for the maximum shear stress less 

than 9066.67 2/ inlb increases with an increase in the number of uncertain parameters.  
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Table 5.9 Evidences (experts) for the uncertain parameters 321 ,, xxx and 4x  

Interval 

x1 x2 x3 x4 

Expert1 Expert2 Expert1 Expert2 Expert1 Expert2 Expert1 Expert2 
(Evidence1)                                        

(S1) 
(Evidence2)                                        

(S2) 
(Evidence1)                                        

(S1) 
(Evidence2)                                        

(S2) 
(Evidence1)                                        

(S1) 
(Evidence2)                                        

(S2) 
(Evidence1)                                        

(S1) 
(Evidence2)                                        

(S2) 

Bpa Bpa Bpa Bpa Bpa Bpa Bpa Bpa 
[0.85,0.86] 0.01 0.01 0.03 0.03 0.02 0.03 0.03 0.04 
[0.86,0.87] 0.02 0.02 0.04 0.03 0.04 0.03 0.05 0.05 
[0.87,0.88] 0.03 0.02 0.04 0.03 0.04 0.04 0.04 0.05 
[0.88,0.89] 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04 
[0.89,0.90] 0.05 0.04 0.05 0.04 0.06 0.05 0.04 0.04 
[0.90,0.91] 0.06 0.04 0.08 0.07 0.06 0.07 0.08 0.07 
[0.91,0.92] 0.06 0.05 0.08 0.07 0.08 0.08 0.08 0.08 
[0.92,0.93] 0.08 0.07 0.1 0.09 0.09 0.1 0.1 0.1 
[0.93,0.94] 0.09 0.09 0.09 0.08 0.11 0.1 0.09 0.08 
[0.94,0.95] 0.1 0.1 0.11 0.11 0.09 0.09 0.1 0.11 
[0.95,0.96] 0.08 0.08 0.1 0.11 0.06 0.05 0.08 0.08 
[0.96,0.97] 0.08 0.09 0.05 0.05 0.05 0.05 0.05 0.05 
[0.97,0.98] 0.06 0.07 0.05 0.05 0.06 0.06 0.06 0.06 
[0.98,0.99] 0.06 0.07 0.04 0.05 0.04 0.04 0.04 0.04 
[0.99,1.00] 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 
[1.00,1.01] 0.05 0.06 0.03 0.04 0.04 0.04 0.03 0.02 
[1.01,1.02] 0.05 0.06 0.02 0.04 0.04 0.05 0.02 0.03 
[1.02,1.03] 0.03 0.04 0.01 0.03 0.02 0.02 0.01 0.01 
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5.5 DST METHODOLOGY WHEN SOURCES OF EVIDENCE HAVE 
DIFFERENT CREDIBILITIES 

 

When the credibilities of the various expert opinions are different, a modified 

DST, proposed in this section, can be used for combining evidences. Let ic be the 

weighting/credibility factor for the source of evidence i where 0 ≤ ci 

 

≤ 1. The combined 

bpa with all the available evidence is determined as:  

))(1(*)()......3(*)2(*)1(*)c-(1             
................)()......3(*))2(-(1*)1(*)c-(1             

)()....2(*))1(-(1*)c-(1+)().....2(*)1(

11321n

3212

21121..12

SnmSnmSmSmSm
SnmSmSmSm

SnmSmSmSnmSmSmm

nn

n

nnn

−−+
++

=

−

     (5.7) 

where )1(1 Sm , )2(2 Sm ….. )(Snmn  are the bpa’s for a particular interval range from 

sources 1,2,..n (S1, S2, ..., Sn), respectively, and nm ...12  is the combined bpa obtained 

from the DST rule for the same interval range. For example, if the number of sources is 

two (n = 2), Eq. (5.7) gives 

)2(*))1(-(1*)c-(1)1(*))2(-(1*)c-(1+)2(*)1( 2111222112 SmSmSmSmSmSmm +=    (5.8) 

where )1(1 Sm  and )2(2 Sm  are the bpa’s for a particular interval range from sources 1 

and 2, respectively, and 12m  is the bpa obtained from the DST rule for the same interval 

range.  

Note that the degree of uncertainty, )(Θm , itself is not multiplied by the weighting factor 

and Eq. (5.8) reduces to Eq. (4.1) when all the credibility factors are equal to 1. Also, 

when c1 = 0 or c2 = 0, Eq. (5.7) reduces to the formula corresponding to the case with 

only n-1 sources of evidence.  Once the modified bpa is determined, the DST can be used 
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to combine evidences. The procedure, termed the Weighted Dempster Shafer Theory for 

Interval-valued data (WDSTI), is outlined below. 

 
5.5.1 Solution procedure with Weighted Dempster Shafer Theory for Interval-

valued data (WDSTI) 
 

The procedure to determine the belief and plausibility functions using WDSTI is 

indicated in the following steps: 

 

1. Use DST or Zhang’s rule corresponding to Dempster’s rule (i.e., when |C| = |A||B|) 

to combine the evidences from interval valued input data.  

2. Find the bpa’s using Eq. (5.8) for the product of evidences. 

3. Let the sum of all the bpa’s be n. Using the normalization factor 1/n, multiply 

each of the bpa’s by 1/n. 

4. The number of uncertain parameters used to find the combined evidence 

determines the dimensionality of the product table of bpa.  

5. Calculate the belief and plausibility functions using the vertex method as 

described earlier. 

 

5.5.2 Safety analysis of a welded beam 

The safety analysis of the welded beam described in section 4.4 is considered 

again. The maximum shear stress induced in the welded beam can be calculated using 

Eqs. (4.33) – (4.36). The problem is solved with two and four uncertain parameters. For 

the two-uncertain parameter case, the length of weld (l) and the height of the weld (h) are 

considered to be uncertain. For the four-uncertain parameter case, the length of weld (l), 
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height of the weld (h), depth of the cantilever (t) and length of the cantilever (L) are 

considered to be uncertain. In each case, the problem is solved using data from two and 

three sources of evidence. The beam is considered unsafe if the maximum induced shear 

stress in the weld is greater than 9066.67 2/ inlb . If the credibilities of the sources of 

evidence 1 and 2 are 1 and c )10( ≤≤ c , respectively, the belief and plausibility can be 

determined as follows: 

 

(i) The intervals are combined in the usual manner (as in the case of equal credibilities for 

all sources of evidence) except that the bpa’s are calculated using Eq. (5.7). 

(ii) The DST or Zhang’s rule corresponding to Dempster’s rule (i.e., when |C| = |A||B|) is 

used to combine the evidences as per the WDSTI method to compute the combined bpa 

values and the resulting values are normalized as indicated earlier. 

(iii) The belief and plausibility functions are computed using the vertex method. 

 

5.5.3 Numerical results 

The methodology of WDSTI is illustrated for the safety analysis of a welded 

beam by considering the following six cases. 

Case 1: Two uncertain parameters with evidence from two different sources 

Let 21  and xx denote the multiplication factors for the uncertain parameters l and h, 

respectively. The two sources of evidence are assumed to provide possible ranges or 

intervals of 21  and xx along with the corresponding bpa’s as given in Table 5.8. The 

values of belief and plausibility computed for different values of the credibility (c) of 

source 2, with )10( ≤≤ c , are shown in Fig. 5.3. 
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Figure 5.3 Variations of belief and plausibility with credibility (c) of source 2 

 

Case 2: Two uncertain parameters with evidence from three different sources 

The uncertain parameters are assumed to be the length of the weld (l) and height of the 

weld (h) with their uncertainties described by the multiplication factors 21  and xx , 

respectively. Three sources of evidence are assumed to give possible ranges of the 

intervals of 21  and xx along with the corresponding bpa’s as indicated in Table 5.8 

(sources 1 and 2) and Table 5.10 (source 3) along with Table 5.8. The credibilities of 
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sources 1, 2 and 3 are assumed to be 1, 1 and c )10( ≤≤ c , respectively. The resulting 

belief and plausibility values are shown in Fig. 5.4. 

Table 5.10 Evidence for the uncertainty factors 1x  and 2x from sources 3 
 

Interval 

x x1 2 
Expert3 Expert3 
(Evidence3)                                        

(S3) 
(Evidence3)                                        

(S3) 

Bpa Bpa 
[0.85,0.86] 0.025 0.035 
[0.86,0.87] 0.035 0.05 
[0.87,0.88] 0.04 0.045 
[0.88,0.89] 0.05 0.045 
[0.89,0.90] 0.055 0.04 
[0.90,0.91] 0.065 0.075 
[0.91,0.92] 0.08 0.08 
[0.92,0.93] 0.095 0.1 
[0.93,0.94] 0.105 0.085 
[0.94,0.95] 0.09 0.105 
[0.95,0.96] 0.055 0.08 
[0.96,0.97] 0.05 0.05 
[0.97,0.98] 0.06 0.06 
[0.98,0.99] 0.04 0.04 
[0.99,1.00] 0.05 0.05 
[1.00,1.01] 0.04 0.025 
[1.01,1.02] 0.045 0.025 
[1.02,1.03] 0.02 0.01 
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Figure 5.4 Variations of belief and plausibility with varying values of credibility (c) 
of source 3 

 

Case 3: Four uncertain parameters with evidence from two different sources 

The depth of the cantilever (t), length of the cantilever (L), length of the weld (l) and 

height of the weld (h) are considered as the uncertain parameters with 4321    , , xandxxx

indicating their corresponding multiplication factors. The evidences, in the form of 

interval ranges of the factors 4321    , , xandxxx , from two different sources are assumed to 
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be as indicated in Table 5.9. The values of belief and plausibility computed for different 

values of the credibility (c) of source 2, with )10( ≤≤ c , are shown in Fig. 5.5. 

 

 

Figure 5.5 Variations of belief and plausibility with credibility (c) of source 2 
 

Case 4: Four uncertain parameters with evidence from three different sources 

In this case, evidences for the four uncertain parameters and the associated multiplication 

factors 4321    , , xandxxx considered in Case 3 are assumed to be available from three 
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sources as indicated in Table 5.9 (sources 1 and 2) and Table 5.11 (source 3). The values 

of belief and plausibility obtained with different values of the credibility (c) of source 3, 

with )10( ≤≤ c , are shown plotted in Fig. 5.6. 

 
Table 5.11 Evidence for the uncertain factors of , 1x , 2x , 3x   ,  and  4x from sources 3 
 

Interval 

x1 x2 x3 x4 
Expert3 Expert3 Expert3 Expert3 
(Evidence3)                                        

(S3) 
(Evidence3)                                        

(S3) 
(Evidence3)                                        

(S3) 
(Evidence3)                                        

(S3) 

Bpa Bpa Bpa Bpa 
[0.85,0.86] 0.01 0.08 0.025 0.035 
[0.86,0.87] 0.01 0.08 0.035 0.05 
[0.87,0.88] 0.01 0.08 0.04 0.045 
[0.88,0.89] 0.02 0.09 0.05 0.045 
[0.89,0.90] 0.02 0.09 0.055 0.04 
[0.90,0.91] 0.02 0.09 0.065 0.075 
[0.91,0.92] 0.02 0.1 0.08 0.08 
[0.92,0.93] 0.03 0.09 0.095 0.1 
[0.93,0.94] 0.03 0.07 0.105 0.085 
[0.94,0.95] 0.04 0.05 0.09 0.105 
[0.95,0.96] 0.09 0.05 0.055 0.08 
[0.96,0.97] 0.09 0.03 0.05 0.05 
[0.97,0.98] 0.09 0.03 0.06 0.06 
[0.98,0.99] 0.09 0.02 0.04 0.04 
[0.99,1.00] 0.1 0.02 0.05 0.05 
[1.00,1.01] 0.1 0.01 0.04 0.025 
[1.01,1.02] 0.11 0.01 0.045 0.025 
[1.02,1.03] 0.12 0.01 0.02 0.01 
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Figure 5.6 Variations of belief and plausibility with the credibility (c) of source 3 
 

Case 5: Two uncertain parameters with evidence from three different sources (Same as 

case 2) with varying credibilities for two sources  

The uncertain parameters are assumed to be the length of the weld (l) and height of the 

weld (h) with their uncertainties described by the multiplication factors 21  and xx , 

respectively, as in case2. The credibilities of sources 1, 2 and 3 are assumed to be c1, c2 

and c3, respectively, with c1 assumed to be equal to 1 and the other two credibilities (c2 
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and c3) assumed to have values indicated in Table 5.12. The resulting belief and 

plausibility values are shown in Figs. 5.7 and 5.8, respectively 

 

Table 5.12 Credibilities c2 and c3 for the sources 2 and 3 
 

c2 c3 
0.1 0.1 
  0.3 
  0.5 
  0.7 
  0.9 
  1.0 

0.3 0.1 
  0.3 
  0.5 
  0.7 
  0.9 
  1.0 

0.5 0.1 
  0.3 
  0.5 
  0.7 
  0.9 
  1.0 

0.7 0.1 
  0.3 
  0.5 
  0.7 
  0.9 
  1.0 

0.9 0.1 
  0.3 
  0.5 
  0.7 
  0.9 

  1.0 
 



www.manaraa.com

146 
 

 

 

Figure 5.7 Variations of belief with varying values of credibilities of sources 2 and 3 
 

 

Figure 5.8 Variations of plausibility with varying values of credibilities of sources 2 
and 3 
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Case 6: Four uncertain parameters with evidence from three different sources (Same as 

case 4) with varying credibilities for two sources  

The depth of the cantilever (t), length of the cantilever (L), length of the weld (l) and 

height of the weld (h) are considered as the uncertain parameters with 4321    , , xandxxx

indicating their corresponding multiplication factors. The evidences for these 

multiplication factors 4321    , , xandxxx  from three different sources are assumed to be 

same as in case 4. The credibilities of sources 1, 2 and 3 are assumed to be c1, c2 and c3, 

respectively, with c1 assumed to be equal to 1 and the other two credibilities (c2 and c3) 

assumed to have values indicated in Table 5.12. The resulting belief and plausibility 

values are shown in Figs. 5.9 and 5.10, respectively 

 

Figure 5.9 Variations of belief with varying values of credibilities of sources 2 and 3 
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Figure 5.10 Variations of plausibility with varying values of credibilities of sources 2 
and 3 

 

5.6 DISCUSSION 

  A methodology is presented for the safety analysis of uncertain systems in the 

presence of multiple sources of evidence based on DST. The information on the uncertain 

parameters is assumed to be available in the form of interval- valued data from multiple 

sources. The vertex method is used in computing the interval- valued response of the 

system using known mathematical expressions. 

The methodology is extended for combining evidence from multiple sources when 

different values of credibility are associated with different sources. Figures 5.3 – 5.6 

indicate that irrespective of the number of sources, the belief and plausibility values 

converge to those corresponding to the ones obtained by considering evidences from (n-
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1) sources when the credibility of one of the sources (nth source) is reduced to zero. The 

belief and/or plausibility will increase with an increase in the number of sources of 

evidence and decrease with an increase in the number of uncertain parameters in the 

model. It can also be observed that the variations of the belief and plausibility values with 

varying values of the credibility of the source are similar, i.e.,  when the belief curve 

rises, the corresponding plausibility curve also rises. A sudden variation can be seen in 

the curves (Fig 5.6) when the credibility of one of the sources varies between 0 to 0.1 as 

it involves combining n-1 intervals for c = 0 and n intervals for c > 0 (such as c > 0.1) 

and due to less credibility value of the 3rd source (c = 0.1) (as it increases the uncertainty 

in the model thereby causing a decrease in both belief and plausibility values ; the belief 

and plausibility values tend to improve with an increase in the credibility of the 3rd 

source.) The effect of credibility can be seen to become more significant when its value is 

closer to 1 (i.e., large changes in the slopes of the curves can be seen near c = 1). The 

curves shown in Figs 5.7 to 5.11 indicate that both belief and plausibility increase with an 

increase in the credibility of the 3rd

The results indicate that evidence theory can deal with situations in which epistemic 

uncertainties are represented by interval-valued parameters. This capability is important 

in many engineering applications because the precision of the available data can only 

permit representation as interval- valued information (as in the case of tolerance values). 

 sources while the credibilities of the other sources are 

kept constant. This increase is observed to be very high when the credibility is close to 1. 

The belief and plausibility values increase with the number of sources of evidence and 

thus the results obtained through the application of DST are justified as there is 

consistency of the evidences among different sources. 
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In addition, evidence theory does not require the assumption of probability distributions 

of input parameters if none is available. It can be seen that evidence theory is able to 

propagate the interval-valued input data to system response in the form of bounds known 

as interval-valued probabilities consistent with the available evidence on the input data; 

in other words, evidence theory gives the highest and the lowest possible probabilities 

consistent with the available evidence on the input data. It is to be noted that the method 

of combining evidences is dependent on the available data in the specific situation and a 

unified method, suitable for combining evidences in all possible situations, dealing with 

epistemic uncertainty, cannot be given in the form of a simple mathematical expression. 

 

5.7 SUMMARY 

When evidences on several uncertain parameters are available from a number of 

sources (experts) in an engineering problem, and if the response of the system involves 

mathematical expressions, DST or Zhang’s combination rule can be used. In the case of 

the welded beam problem, evidences of two and four uncertain parameters are combined 

to find the maximum shear stress induced in the weld. A modified DST method is also 

presented to combine evidences from multiple sources, when the multiple sources of 

evidence have different credibilities. The variations in the belief and plausibility have 

been observed to depend on the number of interval ranges for the interval-valued data for 

combining the evidence. In the next chapter, a methodology is proposed to combine 

evidence when sources of evidence have different credibilities by using fuzzy theory in 

conjunction with the vertex method. 
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CHAPTER 6 
 

AN EVIDENCE-BASED FUZZY APPROACH FOR THE 
SAFETY ANALYSIS OF UNCERTAIN SYSTEMS 

 
 

6.1 OVERVIEW 
 

The application of Dempster Shafer theory for combining multiple sources of 

evidence to handle the uncertainties present in engineering systems is well established. In 

this chapter, a fuzzy approach is presented for the safety analysis of uncertain engineering 

systems in the presence of multiple sources of evidence (in section 6.2). The α-cut 

approach described in section 3.3 of chapter 3 is used to represent the fuzzy membership 

functions of the uncertain parameters. The large epistemic uncertainty information for 

each of the uncertain parameters is assumed to be available in the form of interval-valued 

data from multiple sources. The fuzzy membership function of the response of the system 

(such as the margin of safety) is computed by applying fuzzy arithmetic to the 

mathematical formulation of the system. A new procedure is introduced to calculate the 

bounds on the response of the system such as the margin of failure and margin of safety 

in section 6.3. After the presentation of an illustrative example in section 6.4, a new 

methodology, termed the Weighted Fuzzy Theory for Intervals (WFTI), is proposed in 

section 6.5, for combining evidence when different credibilities are associated with the 

various sources of evidence. The application of the proposed method is illustrated by 

considering the design of a welded beam involving multiple uncertain parameters in 

section 6.5. A summary of this chapter is included on section 6.6.  
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6.2 FUZZY APPROACH FOR COMBINING EVIDENCES 

When evidences from multiple sources are available regarding the uncertainty of 

a system, Dempster-Shafer theory has traditionally been used to combine the evidences. 

This theory was studied and described in detail by Dempster [54] and Shafer [186]. 

Dempster-Shafer theory is considered as a generalization of probability theory where 

probabilities are assigned to sets instead of mutually exclusive events. In Dempster-

Shafer theory, evidence can be associated with multiple or sets of events. By combining 

evidence from multiple sources, Dempster-Shafer theory provides the lower and upper 

bounds, in the form of belief and plausibility, for the probability of occurrence of an 

event. In this work, an uncertain parameter is modeled as a fuzzy variable and the 

available evidences on the ranges of the uncertain parameter, in the form of basic 

probability assignments (bpa’s), are represented in the form of membership functions of 

the fuzzy variable [38,113,143]. The membership functions constructed from the 

available evidences from multiple sources are added as multiple fuzzy data to find the 

combined membership of the uncertain or fuzzy parameter. The resulting combined 

membership function of the fuzzy parameter is then used to estimate the lower and upper 

bounds of any response quantity of the system, (such as the margin of safety or margin of 

failure) in the context of the safety analysis of an engineering system. 
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6.3 COMPUTATION OF BOUNDS ON THE MARGIN OF 
FAILURE/SAFETY 
 

The following procedure is used to calculate the bounds on the margin of failure 

of the system based on the membership function of the margin of failure curve shown in 

Fig. 6.1. We define margin of failure as 

Margin of failure = Maximum induced stress - Maximum permissible stress 

Let A represent the area under the membership function curve until the margin of 

failure equals to zero, B indicate the area under the membership function value curve for 

the margin of failure greater than zero. The lower and upper bounds on the margin of 

failure (greater than zero) can be expressed as 

BA
B  boundUpper 

0  boundLower 

+
=

=
           (6.1) 

where A>>B. 

  
Figure 6.1 General membership function of the margin of failure 
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Similarly, the bounds on the margin of safety of the system can be computed using the 

membership function of the margin of safety curve shown in Fig. 6.2. We define margin 

of safety as 

Margin of safety = Maximum permissible stress - Maximum induced stress 

Let A represent the area under the membership function curve until the margin of safety 

equals to zero, B indicate the area under the membership function value curve for the 

margin of safety greater than zero. The lower and upper bounds on the margin of safety 

can be expressed as 

1  boundUpper 

 
BA

B boundLower 

=
+

=
           (6.2) 

where A<<B. 

 

 

0 

A 

B 

1 

Margin of safety 

Membership 
function 

Figure 6.2 General membership function of the margin of safety 
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6.4 ILLUSTRATIVE EXAMPLE: A WELDED BEAM PROBLEM 

To illustrate the methodology of combining evidences using a fuzzy approach, the 

safety/failure analysis of the welded beam introduced in section 4.4 of chapter 4 is 

considered. The beam is considered unsafe if the maximum shear stress in the weld is 

greater than the permissible stress of maxτ for the data [122]: P = 6000 lb, L = 14 in., 

psi 1030 6xE = , psi 600,13max =τ , h = 0.3437 in., l = 8.149 in. and t = 8.273 in. b = 

0.2455 in. The bounds on the margin of safety and margin of failure of the welded beam 

are computed for two types of data. In the first type, the uncertain parameters are 

assumed to be fuzzy with triangular membership functions. In the second type, the ranges 

of the uncertain parameters are assumed to be available in the form of evidences from 

multiple sources. 

 

6.4.1 With assumed triangular membership functions for uncertain parameters 

Two cases are considered: one with two uncertain parameters and the other with 

four uncertain parameters. A matlab program is developed to implement the fuzzy 

arithmetic required to handle both the two and the four uncertain parameters and obtain 

an assessment of the likelihood of the maximum induced shear stress exceeding the 

specified permissible value. 
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Case 1: Two uncertain parameters 

The length of the weld (l) and the height of the weld (h) are treated as the 

uncertain parameters. Let 2 1  and xx denote the multiplication factors that define the 

uncertainties of these parameters about their respective nominal values. The membership 

functions of 2 1  and xx are assumed to be triangular as shown in Figs. 6.3(a) and (b). 
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(a) 

 

(b) 

Figure 6.3 Fuzzy membership functions of   1x   and 2x  
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The permissible stress, allowableτ , is assumed to be a fuzzy quantity with a triangular 

membership function in the range of ± 15% of maxτ (0.85 maxτ  psi to 1.15 maxτ  psi) with 

psi 600,13max =τ as shown by the solid line in Fig. 6.4. The dotted curve in Fig. 6.4 

shows the fuzzy description of the maximum shear stress induced in the beam. The 

margin of safety is calculated as the fuzzy difference between allowableτ  and maxτ as shown 

in Fig. 6.5. Similarly, the margin of failure is calculated as the fuzzy difference between 

maxτ and allowableτ  as shown in Fig. 6.6. 

 

Figure 6.4 Fuzzy membership functions of  maxτ  and allowableτ  
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Figure 6.5 Fuzzy membership function of the margin of safety 

 

Figure 6.6 Fuzzy membership function of the margin of failure 
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Equations 6.1 and 6.2 are used to find the lower and upper bounds on the margin of 

failure as well as the margin of safety based on the curves shown in Figs. 6.5 and 6.6, 

respectively, and the results are shown in Table 6.1. 

 
Table 6.1 Lower and upper bounds on the margins of failure and safety 

 

Response 

quantity 

Case-1 Case-2 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Margin of 

failure 
0 0.24873 0 0.52194 

Margin of 

safety 
0.75127 1 0.47806 1 

 

Case 2: Four uncertain parameters 

In this case, the depth of the cantilever (t), length of the cantilever (L), length of the weld 

(l) and height of the weld (h) are considered as the four uncertain parameters with 

4321  and  , , xxxx indicating their corresponding multiplication factors (representing 

variations about their respective nominal values). The membership functions for 

2 1  and xx  are assumed to be same as in Case-1 (Fig. 6.3). The membership functions of 

the possible ranges or intervals of 43  and  xx are assumed to be triangular as shown in Fig. 

6.7.  
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(a) 

 

(b)       

Figure 6.7 Fuzzy membership functions of 3x  and 4x  
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   The procedure indicated earlier is used to find the likelihood of the maximum induced 

shear stress exceeding the specified permissible/allowable value, allowableτ , which is 

considered to be a fuzzy quantity with a triangular membership function with a range of ± 

15% of maxτ (0.85 maxτ  psi to 1.15 maxτ  psi) with psi 600,13max =τ as shown by the solid 

line in Fig. 6.8. The dotted curve in Fig. 6.8 shows the fuzzy description of the maximum 

shear stress induced in the beam.  

 

Figure 6.8 Fuzzy membership functions of maxτ  and allowableτ  
 

The margin of safety, calculated as the fuzzy difference between allowableτ  and maxτ , i.e., 

allowableτ  - maxτ  and is shown in Fig. 6.9. Similarly, the margin of failure, calculated as the 

fuzzy difference between maxτ and allowableτ , i.e., maxτ - allowableτ , is shown in Fig. 6.10. 
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Figure 6.9 Fuzzy membership function of the margin of safety 
 

 

Figure 6.10 Fuzzy membership function of the margin of failure 
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Using the procedure indicated in Case 1, the lower and upper bounds on the margins of 

safety and failure are computed from the membership function curves shown in Figs. 6.9 

and 6.10, respectively, to obtain the results indicated in Table 6.1.  

 

6.4.2 With membership functions of uncertain parameters constructed using 
evidences from multiple sources 
 
The methodology is illustrated for the safety/failure analysis of a welded beam by 

considering two cases. In each case, two types of membership functions - triangular and 

trapezoidal – are assumed. The range of triangular membership function for allowableτ
    

is 

assumed as  ± 15% of maxτ  (0.85 maxτ  to 1.15 maxτ ) with center at maxτ  and the range of 

trapezoidal membership function is assumed to be ± 15% of maxτ  (0.85 maxτ  to 1.15 maxτ ) 

at α = 0  an d ± 3 % o f maxτ  (0.97 maxτ  to 1.03 maxτ ) at α = 1. Matlab programs are 

developed to incorporate the evidences for the various interval ranges of the uncertain 

parameters for the following cases. 

 

Case 1: Two uncertain parameters with evidence from three different sources 

The length of the weld (l) and the height of the weld (h) are the uncertain parameters with 

2 1  and xx denoting the multiplication factors that indicate their respective uncertainties. It 

is assumed that three sources of evidence provide possible ranges or intervals of 

2 1  and xx along with the corresponding bpa’s (as in the case of  Dempster Shafer theory) 

as given in Table 6.2. The bpa’s are normalized so that the maximum value corresponds 

to a membership value of one for modeling the uncertain factors as fuzzy quantities and 
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the resulting fuzzy descriptions of factors 2 1  and xx from the evidences available from 

sources 1, 2 and 3 are shown in Figs. 6.11(a)-(c) and 6.12(a)-(c), respectively. The two 

evidences (fuzzy descriptions) available for each of the factors 2 1  and xx  are added to 

obtain the combined fuzzy representations of 2 1  and xx  shown in Figs. 6.11(d) and 

6.12(d), respectively. These combined fuzzy representations are approximated as shown 

in Figs. 6.13(a) and (b) (smoothed by neglecting the valleys in the curves of Figs. 6.11(d) 

and 6.12(d) to avoid multiple disjointed ranges of the variables corresponding to any 

specific value of α-cut in an α-cut representation of the fuzzy quantities).  

The fuzzy maximum induced shear stress in the weld,
 maxτ , computed using the fuzzy 

parameters 2 1  and xx is shown in Fig. 6.14(a). A triangular membership function is 

assumed for the allowable shear stress as shown in Fig. 6.14(b). The maximum induced 

shear stress and the allowable shear stress are shown in the same graph in Fig. 6.14(c). 

The fuzzy margin of safety and margin of failure are computed to obtain Figs. 6.14(d) 

and (e), respectively. Similarly, when a trapezoidal form of membership function is 

assumed for the allowable shear stress (τallow

 

) as shown in Fig. 6.15(a), the fuzzy margins 

of safety and failure can be obtained as shown in Figs. 6.15(c) and (d), respectively.  
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Table 6.2 Evidences for the uncertain factors 1x  and 2x  from sources S1, S2 and S
 

3 

x

Source1 

(S

1 

1

Interval 

) 

[0.7,0.8] [0.8,1.1] [1.0,1.2] [1.2,1.3] 

Bpa 0.1 0.4 0.4 0.1 

Source2  

(S2

Interval 

) 

[0.7,0.9] [0.8,1.0] [1.0,1.2] [1.1,1.3] 

Bpa 0.1 0.4 0.3 0.2 

Source3  

(S3

Interval 

) 

[0.9,1.1] [1.0,1.2] [1.2,1.3]  

Bpa 0.3 0.4 0.3  

x

Source1 

(S

2 

1

Interval 

) 

[0.8,0.9] [0.9,1.1] [1.0,1.2] [1.2,1.3] 

Bpa 0.1 0.4 0.4 0.1 

Source2  

(S2

Interval 

) 

[0.7,0.9] [0.9,1.0] [1.0,1.2] [1.1,1.3] 

Bpa 0.2 0.4 0.2 0.2 

Source3  

(S3

Interval 

) 

[0.9,1.1] [1.0,1.2] [1.2,1.3]  

Bpa 0.4 0.4 0.2  
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(a) 

 

                                                           (b) 
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(c) 

 

(d) 
Figure 6.11 Combined fuzzy membership function of 1x   from sources S1, S2 and S3 
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(a) 

 

(b) 
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(c) 
 

(d) 
 

Figure 6.12 Combined fuzzy membership function of 2x   from sources S1, S2 and S3 
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(a) 

 

(b) 
Figure 6.13 α  - cuts for combined  1x   and 2x   from sources S1, S2 and S3 
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(a) 
 

 

(b) 
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(c) 

 
 

(d) 
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                                                            (e) 
Figure 6.14 α  - cut representation of maxτ  ,  allowableτ   and margins of safety and 

failure 

 

(a) 
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(b) 

 
(c) 
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                                                (d) 
Figure 6.15  α - cut representation of maxτ  ,  allowableτ   and margins of safety and 

failure 
                        

Case 4: Four uncertain parameters with evidence from three different sources 

In this case, the four uncertain input parameters are assumed to be the length of the weld 

(l), height of the weld (h), depth of the cantilever (t) and length of the cantilever (L) with 

4321  and  , , xxxx indicating their corresponding multiplication factors (representing 

variations about their respective nominal values).  The evidences for  1x  and 2x  are 

assumed to be same as those considered in Case 1. The evidences for  3x  and 4x  are 

assumed to be as indicated in Table 6.3. 
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Table 6.3 Evidences for the uncertain factors 3x   and 4x  from sources S1, S2 and S
 

3 

3x  

Source1 

(S1

Interval 

) 

[0.8,0.9] [0.9,1.1] [1.0,1.2]  

Bpa 0.2 0.4 0.4  

Source2  

(S2

Interval 

) 

[0.7,0.9] [0.9,1.0] [1.0,1.2] [1.1,1.2] 

Bpa 0.1 0.5 0.2 0.2 

Source3  

(S3

Interval 

) 

[0.8,1.0] [1.0,1.2] [1.1,1.3]  

Bpa 0.3 0.5 0.2  

4x  

Source1 

(S1

Interval 

) 

[0.7,0.8] [0.8,1.1] [1.0,1.2] [1.2,1.3] 

Bpa 0.2 0.3 0.3 0.2 

Source2  

(S2

Interval 

) 

[0.7,0.9] [0.8,1.0] [1.0,1.2] [1.1,1.3] 

Bpa 0.1 0.5 0.2 0.2 

Source3  

(S3

Interval 

) 

[0.9,1.1] [1.0,1.2] [1.2,1.3]  

Bpa 0.1 0.5 0.4  

 

The combined membership functions of 1x  and 2x , obtained from the individual 

membership functions shown in Figs. 6.11(a)-(c) and 6.12(a)-(c), are shown in Figs. 

611(d) and 6.12(d), respectively. The membership functions of  3x  and 4x  from sources 

S1, S2 and S3 

3x

are shown in Figs. 6.16(a) – (c) and 6.17(a) – (c), respectively. Their 

combined membership functions are obtained as indicated in Figs. 6.16(d) and 6.17(d). 

The α-cuts of the combined smoothed out, fuzzy representations of  and 4x are shown 

in Fig. 6.18. The fuzzy representation of the maximum induced shear stress, maxτ , is 

shown in Fig. 6.19(a). If the allowable shear stress, allowableτ , is assumed to be fuzzy with a 
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triangular membership function as shown in Fig. 6.19(b), the fuzzy representations of the 

margins of safety and failure can be determined as shown in Figs. 6.19(d) and (e), 

respectively. Similarly, if the fuzzy representation of the allowable shear stress, allowableτ , 

is assumed to be trapezoidal as indicated in Fig. 6.20(a), the fuzzy representations of the 

margins of safety and failure can be obtained as shown in Figs. 6.20(c) and (d), 

respectively. 

 

(a) 
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(b) 
 

 
  

(c)  
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                                                          (d) 
 

Figure 6.16 Combined fuzzy membership function of 3x  from sources S1, S2 and S
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(a) 
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(b) 
 

 
 

(c) 
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(d) 

 

Figure 6.17 Combined fuzzy membership function of 4x   from sources S1, S2 and S
 

3 

 
 

(a) 
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(b) 

Figure 6.18  α - cuts for combined 321  , , xxx  and 4x  from sources S1, S2 and S
 

3 

 

 (a) 
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(b)                                  

 

(c) 
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(d) 

 

(e) 
Figure 6.19  α - cut representation of maxτ  ,  allowableτ   and margins of safety and 

failure 
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(a)                                  

 

(b) 
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(c)                                  

 

(d) 
Figure 6.20 α  - cut representation of maxτ  ,  allowableτ   and margins of safety and 

failure 
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6.4.3 Bounds on margins of safety and failure 

Using the procedure outlined in section 6.2, the lower and upper bounds on the 

margins of safety and failure are computed. The results are shown in Tables 6.4 and 6.5 

for Cases 1 and 2, respectively. The Dempster Shafer theory (DST) is also used to 

combine the evidences in each case. In DST, the criteria are allowableτ  ≤ maxτ  and allowableτ  > 

maxτ   are used for the margin of safety and margin of failure, respectively, to obtain the 

results shown in the last rows of Tables 6.4 and 6.5. 

 

Table 6.4 Lower and upper bounds on the margin of safety (Cases 1 and 2) 
 

Allowable shear 

stress, allowableτ  

fuzzy function 

Two uncertain parameters 

(Margin of safety) 

Four uncertain parameters 

(Margin of safety) 

Lower bound Upper bound Lower bound Upper bound 

Triangular 0.74966 1 0.49257 1 

Trapezoidal 0.75215 1 0.49496 1 

DST 1 1 0.98698 1 
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Table 6.5 Lower and upper bounds on the margin of failure (Cases 1 and 2) 
 

Allowable shear 

stress, allowableτ  

fuzzy function 

Two uncertain parameters 

(Margin of failure) 

Four uncertain parameters 

(Margin of failure) 

Lower bound Upper bound Lower bound Upper bound 

Triangular 0 0.25034 0 0.50743 

Trapezoidal 0 0.24785 0 0.50504 

DST 0 0 0 0.013017 

 

 

6.5 WEIGHTED FUZZY THEORY FOR INTERVAL-VALUED 
DATA FROM MULTIPLE SOURCES WITH DIFFERENT 
CREDIBILITIES 

 

In practice, the credibilities of the different sources of evidence for the uncertain 

parameters may be different. To consider the credibilities associated with the sources of 

evidence, a procedure, termed the weighted fuzzy theory for intervals (WFTI), is 

proposed in this work for determining the lower and upper bounds on the margins of 

safety and failure. The general procedure is described by the following steps: 

1. Normalize the evidences from each source before considering the credibilities of 

that source. 

2. Multiply the normalized evidences by the credibilities of the corresponding 

sources. Each of the credibilities is assumed to lie in the range 0 to 1. 
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3. Obtain the combined outer envelope of the fuzzy membership function of each 

uncertain parameter by superposing all the membership functions (normalized 

evidences) of the uncertain parameter given by the various sources. 

4. Compute the alpha-cuts of the combined outer envelopes (or the combined fuzzy 

membership functions).  

5. Calculate the response or output of the system using the algebra of interval 

numbers or parameters.  

6. Determine the lower and upper bounds on the response or output parameter using 

the procedure described in Section 6.2. 

The procedure is illustrated by considering the following two cases. The range of 

trapezoidal membership function for allowableτ    is assumed to be ± 15% of maxτ  (0.85 maxτ  

to 1.15 maxτ ) at α = 0 and ± 3% of maxτ  (0.97 maxτ  to 1.03 maxτ ) at α = 1. A Matlab program 

is developed to incorporate the WFTI procedure to include the credibility information of 

the various sources in the calculation of lower and upper bounds on the margins of safety 

and failure. 

 

Case 1: Two uncertain parameters with evidence from three different sources 

The length of the weld (l) and the height of the weld (h) are considered to be the 

uncertain parameters with 21  and xx
 

denoting the multiplication factors for these 

parameters. Three sources of evidence are assumed to provide possible ranges or 

intervals of 21  and xx
 
along with the corresponding bpa’s as given in Table 6.2. The 

credibility of source S3 is assumed to be less than one and is varied from 0 to 1 in 

increments of 0.1. Figure 6.23 shows the variation of the lower bound on the margin of 
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safety with varying values of the credibility of source S3. Figure 6.24 shows the 

variations of the upper bound on the margin of failure with varying values of the 

credibility of source S3. It can be observed that the lower bound on the margin of safety 

and the upper bound on the margin of failure vary in complementary way to each other as 

the credibility of source S3 varies from 0 to 1 and nature of the variation depends on the 

evidence given to the intervals of the source S3. Consider the case when credibility of 3rd

 

 

source is equal to 0.7.  The step 2 of the WFTI procedure described in section 6.5 can be 

illustrated as shown in Figures 6.21 and 6.22. It can be seen that Figures 6.11(c) and 

6.12(c) are transformed to 6.21(a) and 6.22(a) and thus the resulting combined fuzzy 

membership functions as shown in Figures 6.21(b) and 6.22(b) are obtained as different 

from corresponding Figures 6.11(d) and 6.12(d). The upper bound for the margin of 

failure is found to be 0.2524, same as the value obtained from the curve in Figure 6.24. 

(a) 
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(b) 

Figure 6.21 Combined fuzzy membership function of 1x   from sources S1, S2 and S

 

3 

(a) 
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(b) 

Figure 6.22 Combined fuzzy membership function of 2x   from sources S1, S2 and S
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Figure 6.23 Variation of lower bound on margin of safety with the credibility of 
source S

 
3 
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Figure 6.24 Variation of upper bound on margin of failure with the credibility of 
source S

 
3 

 

Case 2: Four uncertain parameters with evidence from three different sources 

In this case, the length of the weld (l), height of the weld (h), depth of the 

cantilever (t) and length of the cantilever (L) are assumed to be the uncertain parameters 

with 4321  and  , , xxxx  indicating their corresponding multiplication factors. The evidences 

for  1x  and 2x are assumed to be same as those considered in Case 1. The evidences for  

3x  and 4x  are assumed to be same as those shown in Table 6.3. Figure 6.25 shows the 
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variation of the lower bound on the margin of safety with varying values of the credibility 

of source S3 while Fig. 6.26 shows the variation of the upper bound on the margin of 

failure with varying values of the credibility of source S

 

3 

 

Figure 6.25 Variation of lower bound on margin of safety with the credibility of 
source S
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Figure 6.26 Variation of upper bound on margin of failure with the credibility of 
source S

 
3 

The variation in the lower/upper bound on the margin of safety/failure as the 

credibility of source 3 increases depends on the evidence distribution on the interval 

ranges from source 3, effect of uncertain parameters on margin of safety/failure and 

number of uncertain parameters.  The difference between lower and upper bounds for 

both margin of safety and margin of failure increases with increase in number of 

uncertain parameters used in the analysis. The validity of this statement is intuitively 

obvious as the uncertainty of the system increase with increase in the number of uncertain 

parameters used in the analysis. 
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6.6 SUMMARY 

We found in this chapter that the sum of the lower bound on margin of safety and 

the upper bound on margin of failure is always equal to 1 in all cases as expected. As the 

number of alpha cuts used in the numerical computation of the bounds on the margins of 

safety and failure changed, the values of the computed bounds are found to vary. 

However, with increasing number of the alpha cuts, the bounds are found to converge to 

the values reported in this work. Irrespective of the number of sources of evidence, when 

the assumed fuzzy membership function of the allowable shear stress changes from the 

triangular to the trapezoidal shape, the lower and upper bounds tend to shrink the ranges 

of the margins of safety and failure. The widening or shrinking of the ranges of the 

margins of safety and failure is observed to depend on the available evidence and the 

influence of the uncertain parameters on the output or response parameter of the system. 

In general, the procedure proposed for considering the credibilities of the various sources 

of evidence (WFTI) is applicable for combining evidence to evaluate the safety/failure of 

any uncertain system in the presence of evidence on the uncertain parameters from 

different sources. The methodology presented in this chapter provides an alternative 

framework for combining evidence from multiple sources using fuzzy theory. In the next 

chapter, a general optimization model using modified PSO coupled with modified game 

theory is proposed to solve multi-objective optimization problems. 
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CHAPTER 7 
 

DESIGN OPTIMIZATION OF ENGINEERING SYSTEMS 
USING PARTICLE SWARM OPTIMIZATION  

 

7.1 OVERVIEW 

This chapter proposes particle swarm optimization (PSO) based algorithms to solve 

engineering optimization problems involving different types of design variables 

(continuous, discrete and/or mixed) and single or multiple objective functions. The 

original PSO algorithm is modified to include dynamic maximum velocity function and 

bounce method, is described in section 7.2, to enhance the computational efficiency and 

solution accuracy. The procedure to use a closest discrete approach (CDA) in the 

modified PSO to solve optimization problems with discrete design variables is considered 

in section 7.3. Several engineering applications for single objection optimization 

problems are considered in section 7.4. A new modified game theory approach (MGT) is 

coupled with the modified PSO, is proposed in section 7.5, to solve multi-objective 

optimization problems. Several engineering applications like the design of 2-bar and 25-

bar trusses, design of I-beam and design of gear box for multi-objective optimization is 

considered in section 7.6. This chapter is concluded by a summary in the last section. 

 

7.2  MODIFIED PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization algorithm [76,88,102,125,144,153,160,161,164,194], 

described in section 3.4 of chapter 3, is considered along with modification to include 
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dynamic velocity function for maximum adaptable velocity for the particles, bounce 

method and dynamic penalty function to the optimization algorithm. 

 

7.2.1 Dynamic velocity function 

The adaptable velocity obtained from equation (3.31) is limited by the dynamic 

velocity function [ ]T
nvvvV maxmax2max1max ,,, 


= , as proposed in this work, to improve the 

convergence of the algorithm. The maximum velocity for tth
maxtv variable, , is defined as 

ntev bai
t ,,2,1,max == +−                        (7.1) 

where a and b are constants evaluated as 

i
i

v
v

a i

f

.
log

max










=                         (7.2) 

                      (7.3) 

where iv and fv represent, respectively, the initial and final limits for the maximum 

velocity of the tth

maxV


 variable used in the algorithm. Introduction of the exponentially 

decaying function  in the algorithm will boost the particles to converge faster to the 

optimal solution in the first few iterations of the algorithm. All the components of maxV


are 

assumed to be same in the matlab program; thus the maximum velocity for all variables 

will be equal to the constant value assumed for the components of maxV


. Introduction of 

the exponentially decaying function maxV


 in the algorithm will boost the particles to 

converge faster to the optimal solution in the first few iterations of the algorithm. For 

example, if the maximum number of iterations, maxi = 100 and maximum velocity limits 

( )fvab log+=
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are maxiv = 1 and maxfv = 0.01 then the maximum velocity of the particle in any particular 

iteration can be found from equation (7.1) which is shown graphically in Figure 7.1. The 

limits for maximum velocities (initial and final limits) depends on the range of the design 

variables and thus they problem dependent.  As the design thumb rule, final value, maxfV


 

depends on the accuracy on the design variables values required for the optimum 

solutions and its effect on the function value and the initial value, maxiV


depends on the 

range of the design variables allowed in the problem. 

 

Figure 7.1 Variation of maximum velocity with iteration number 

 

All the components of maxV


are assumed to be same in the Matlab program; thus the 

maximum velocity for all variables will be equal to the constant value assumed for the 
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components of maxV


. The values for these limits of maximum velocity depend on the 

ranges of the design variables and they vary from one problem to other. 

 

7.2.2 Bounce method 

This method was introduced by Krink, Vestertroem, and Riget [115] to bounce 

away the particles that cluster around a potentially sub-optimal position. In this method, 

particles bounce back the boundaries with negative velocity once the new updated 

position, as obtained from equation (3.31), crosses the minimum/maximum position limit 

specified in the optimization problem. This provided a significant improvement in the 

performance of the algorithm for the optimization of highly multimodal objective 

functions by avoiding the particles to form a cluster and stagnate. 

 

7.2.3 Dynamic penalty function  

In general, any constrained optimization problem can be solved by converting it 

into an unconstrained one by penalizing the objective function when one or more 

constraints are violated using a penalty function. The basic constrained optimization 

problem with only inequality constraints is of the form: 

Find X


which minimizes )(Xf


subjected to the constraint mjXg j ,,2,1,0)( =≤ . This 

problem can be converted into an unconstrained minimization problem by constructing a 

function of the form:  

( ) [ ]∑
=

+==
m

j
jjkkk XgGrXfrX

1
)()(,


φφ                 (7.4) 
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where kr is a positive constant known as the static penalty parameter. The value of this 

parameter is very high when the solution converges to that of the original constrained 

problem. In the case of exterior penalty approach, jG is taken as: 

 [ ])(,0max XgG jj


=                   (7.5) 

If kr  is not static, then the procedure is called a dynamic penalty function approach. The 

dynamic penalty function stated by Joines and Houck [94] is given by 

)().()( XBiAXfk


+=φ                     (7.6)

α)*()( ictiA =                                                                                      (7.7) 

[ ]∑
=

=
m

j

G
jj

jGGHXB
1

)()).(()( γ
                  (7.8) 

beaGH jG
j +−= ))/(11.()(                    (7.9) 

where i denotes the iteration number, and )( jGH denotes a continuous assignment 

function; )( jGγ  is the power of the maximum violated function and depends on the value 

of jG as obtained from equation (7.5). If 1≤jG , then the power 

.2)(otherwise,;1)( == jj GG γγ  Moreover, the constants in equations (7.7) and (7.9) are 

selected as ct = 0.5, 2=α , a = 150 and b = 10. 

 

7.3  CONSTRAINED OPTIMIZATION 

The general constrained optimization problem can be formulated as: 
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 Find               (7.10) 

which minimize )(Xf


              (7.11) 

subject to                

mjXg j ,,2,1,0)( =≤               (7.12) 

pjXl j ,...,2,1,0)( ==               (7.13) 

nixxx iii ,...,2,1,maxmin =≤≤              (7.14) 

 

7.3.1 Approach for discrete design variables 

7.3.1.1 General form 

A mixed discrete nonlinear programming problem (MDNLP) is often stated in the 

following form: 





















=

nx

x
x

X


 2

1

Find                       (7.15) 

which minimizes )(Xf


             (7.16) 

subject to                

mjXg j ,...,2,1,0)( =≤


             (7.17) 

pixxx iii ,...,2,1,maxmin =≤≤               (7.18) 

{ } qidddDDx riiiiiip ,...,2,1,,.......,,, ,2,1, ==∈+                                     (7.19) 
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where p denotes the number of continuous design variables, q denotes the number of 

discrete design variables with n = p + q, m denotes the number of non-linear behavior 

constraints and iD is the set of discrete values for the ith

 

 discrete design variable. In 

general, the number of discrete values r is different for each discrete design variable. 

7.3.1.2 Closest discrete approach  

This work uses an approach called the closest discrete approach [206] (CDA) to 

handle discrete design variables for any MDNLP (stated in equations 7.15 to 7.19). After 

the selection of initial random population in the modified PSO for all the design 

variables, including the discrete design variables, we select those discrete values from the 

discrete variable set which are closest to the corresponding randomly generated 

continuous values of discrete design variables in the population. These selected discrete 

values are used in place of the continuous values generated in the algorithm for discrete 

design variables. This process is repeated for all iterations of the modified PSO algorithm 

to make sure that at any point of time, the population consists of continuous values for 

continuous design variables and discrete values for discrete design variables. When we 

encounter a case where a continuous value obtained for any particular discrete design 

variable is equidistant from two adjacent discrete values among the permissible discrete 

set, then we choose one of the two discrete values using a random number. If the random 

number generator produces a value less than 0.5 then we choose the smaller discrete 

value and if it is greater than or equal to 0.5 then we choose the higher discrete value for 

that particular discrete design variable. This method is totally different from the existing 

penalty function approach for handling discrete variables in the literature. 
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7.4 APPLICATIONS WITH SINGLE OBJECTIVE FUNCTION 

Two engineering design problems with single objective function are solved to 

validate the proposed approaches using modified PSO. The design of a welded beam, 

with continuous design variables, is considered by applying the dynamic velocity 

function to limit the maximum velocity of the design variables in the algorithm. The 

design of a pressure vessel with mixed discrete design variables is considered to illustrate 

the MDNLP where CDA is used to handle the discrete design variables. 

 

7.4.1 Design of a welded beam 

The design of the welded beam [169,215] described in section 4.4 of chapter 4 is 

considered. The beam is made of low-carbon steel of length L and cross-sectional 

dimensions t and b that is welded to a fixed support. The weld length is l on both top and 

bottom surfaces and the beam is required to support a load P. The weld is in the form of a 

triangle of depth h. The material cost of the welded beam is minimized subject to 

constraints on the shear stress in the weld, bending stress in the beam, deflection of the 

beam and the buckling stress of the beam. By treating h, l, t and b as the design variables

4321 and,, xxxx , respectively, the problem can be stated as  

 

Find 





















=





















=

b
t
l

h

x
x
x
x

X

,beamofwidth
,beamofthickness
,weldtheoflength
,weldtheofheight

4

3

2

1


      (7.20)  

 
which minimizes the material cost of the welded beam 
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(7..21) 

 
Equation (7.21) can be rewritten with suitable cost per unit volumes as: 
 

)(04811.01047.1)( 2432
2
1 xLxxxxXf ++=


                           (7.22) 

 
subject to [169] 
 

0)()( max1 ≤−= ττ XXg


                                                                                       (7.23) 
      

 
0)()( max2 ≤−= σσ XXg


          (7.24) 

 
0)( 413 ≤−= xxXg


           (7.25) 

 
00.5)(04811.010471.1)( 2432

2
14 ≤−++= xLxxxxXg


      (7.26) 

 
0125.0)( 15 ≤−= xXg


          (7.27) 

0)()( max6 ≤−= δδ XXg


          (7.28) 

0)()(7 ≤−= XPPXg c


          (7.29) 

The geometric constraints are given by 

4,1,0.21.0 =≤≤ ixi            (7.30) 

3,2,0.101.0 =≤≤ ixi            (7.31) 

where  
 

22 )''(cos'''2)'( τθττττ ++=   = Shear stress induced in the welded beam           (7.32) 
 

21.2
'

xx
P

=τ  = Primary torsional stress acting over the weld throat area          (7.33) 

 

J
MR

=''τ  = Secondary torsional stress                       (7.34) 
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2
2xLPM  = Moment of P about center of gravity of the weld group    (7.35) 
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R  = Radius of gyration       (7.36) 
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xxxxx
J  = Polar moment of inertia of the weld group   (7.37) 

2
34

6)(
xx

PLX =


σ  = Bending stress of the welded beam       (7.38) 

4
3
3

34)(
xEx

PLX =


δ  = Beam deflection at the end (Beam is assumed as cantilever beam)(7.39) 









−=

G
E

l
x

L
xxEG

XPc 42
1

)36/(013.4
)( 3

2

6
4

2
3

 = Beam buckling load    (7.40) 

The data are: , 6000 lbP = ,in 14=L  ,psi1030 6×=E ,psi1012 6×=G ,in 25.0max =δ  

,psi600,13max =τ and  .psi 000,30max =σ The proposed modified PSO algorithm is 

implemented in a Matlab code to include dynamic velocity function for the maximum 

velocity, bounce method for the position (or variable value) which exceeds the specified 

variable limits and penalty function approach for constraint violation. For the PSO 

parameters, namely, population size = 24, imax 21 cc == 2200, = 2, iwmax= 0.9, iwmin

1and01.0 maxmax == if VV


= 0.3, 

 for all i, stopping convergence criterion (in terms of change in 

the objective function value) = 10-8 for over 140 continuous iterations, the optimum 

solution given in Table 7.1 is obtained. The convergence history is shown in Fig 7.2. The 

number of function evaluations made to obtain this optimum solution is 24, 864 in 0.967 

seconds (CPU time depends on the computer system configuration). The constraint 



www.manaraa.com

209 
 

 
 

values at the optimum solution are found to be: 11
1 10x36.4)( −−=xg , 

-7
2 10x 38.1)( −=xg , 15

3 10x 24.5)( −−=xg , 619.2)(4 −=xg , 1194.0)(5 −=xg , 

1
6 10x34.2)( −−=xg  and 12

7 10x18.8)( −−=xg . The program is run for 20 times and is 

observed that optimum solution had been reached within a range of 0.01 of the optimal 

solution shown in Table 7.1 for 85% of the time. In the remaining 15% cases, the 

solutions were limited by the maximum number of iterations permitted and the difference 

between the terminal solution and the optimal solution reported in Table 7.1 was 

observed to vary between 0.01 and 0.20. This shows the robustness of the present 

algorithm. Deb [51] used simple genetic algorithms with binary representation and a 

traditional penalty function to obtain the optimum solution as shown in Table 7.1 which 

required  40, 080 function evaluations. Ray and Liew [175] solved this problem using a 

society and civilization algorithm using 33, 095 function evaluations.  The present 

modified PSO approach can be seen to yield the solution more efficiently compared to 

the other two approaches. 

Table 7.1 Comparison of optimum solutions for the design of welded beam 

Design variables Deb (1991) 

[51] 

Ray and Liew (2003) 

[175] 

Present Solution 

1x  0.2489 0.2444382760 0.2443689758 

2x  6.1730 6.2379672340 6.2177066318 

3x  8.1739 8.2885761430 8.2914713905 

4x  0.2533 0.2445661820 0.2443689758 

)( *Xf


 2.43311600 2.3854347 2.3809871315 
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Figure 7.2 Convergence history for the design of welded beam 
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7.4.2 Design of a pressure vessel  

Figure 7.3 Pressure vessel 

The design of the pressure vessel [79] shown in Figure 7.3 is considered with 

minimization of the combined cost of materials, forming and welding as the objective 

with constraints to satisfy the ASME code. The design variables 4321 and,, xxxx  

represent the thickness of the shell (Ts), the thickness of the spherical head (Th

21 and xx

), the inner 

radius (R), and the length of the shell (L) respectively, with  assumed to be 

discrete. The problem can be stated as: 

Find X


 which minimizes the cost 

3
2
14

2
1

2
32431 84.191661.37781.16224.0)( xxxxxxxxxXf +++=


                (7.41) 

subject to [79] 

00193.0:)( 311 ≤+− xxXg


          (7.42) 

000954.0:)( 322 ≤+− xxXg


                                (7.43) 

01296000)(3/4:)( 3
34

2
33 ≤+−− xxxXg ππ


                          (7.44) 

0240:)( 44 ≤−xXg


                      (7.45) 
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with 

1875.6,0625.0 21 ≤≤ xx  in increments of 0.0625                             (7.46) 

200,10 43 ≤≤ xx                       (7.47) 

The modified PSO is applied by using a matlab code that incorporates CDA to handle 

discrete variables along with the dynamic velocity function for the maximum velocity, 

bounce method when the position (variable value) exceeds the specified variable limits 

and penalty function approach for constraint violation. For the PSO parameters, 

population size = 24, imax 21 cc == 1000, = 2, iwmax= 0.9, iwmin

2and1.0 maxmax == if VV


= 0.3, 

 for all i, stopping convergence criteria = 10-8

 

 for over 120 

continuous iterations, we obtain the optimum solution given in Table 7.2 and the 

convergence history is shown in Fig 7.4. The number of function evaluations made to 

obtain this optimum solution is 17, 448 in 6.255 seconds (CPU time depends on the 

computer system configuration). The program is run 20 times and the optimum solution 

is reached in 50% of the time as the problem has several local minima and thus the final 

solution is trapped in these local minimums. Coello Coello [49] used genetic algorithm 

with a dominance based tournament selection scheme to handle constraints to obtain the 

optimum solution as shown in Table 7.2 which required  80, 000 function evaluations. As 

the number of function evaluations required is the least among all the available solutions 

for both the welded beam and pressure vessel problems, the proposed modified PSO is 

established to be computationally efficient. 
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Table 7.2 Comparison of optimum solutions for the design of pressure vessel 

Design variables 

and constraints 

Deb and 

Gene [52] 

Coello Coello 

[49] 

Hu et al [79] Liu and Lin 

[126] 

Present 

solution 

1x  0.9375 0.8125 0.8125 0.8125 0.8125 

2x  0.5000 0.4375 0.4375 0.4375 0.4375 

3x  48.3290 40.3239 42.09845 42.098442 42.098445595 

4x  112.6790 200.0000 176.6366 176.636642 176.63659584 

)( *
1 Xg


 -0.04750 -0.034324 0.0 0.0 -9.4x10-14 

)( *
2 Xg


 -0.038941 -0.052847 -0.03588 -0.035881 -3.5x10-2 

)( *
3 Xg


 -3652.87683 -27.10584 -5.820x10 -0.016762 -11 -1.1x10-8 

)( *
4 Xg


 -127.32100 -40.000 -63.3634 -63.363358 -6.33x101 

)( *Xf


 6410.3811 6288.7445 6059.131296 

6059.71602* 

6059.71484 6059.714335 

* indicates the true objective function value corresponding to the reported optimum 

design vector. 
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Fig 7.4 Convergence history for the design of pressure vessel 

  

 

7.5  MODIFIED GAME THEORY APPROACH (MGT) FOR 
MULTIOBJECTIVE OPTIMIZATION 
 

7.5.1 General problem 

A multiobjective optimization problem (MOP) [77] is often stated in the 

following form: 
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1

Find            (7.48) 

kiXfi ......,2,1,)(minimizeswhich =


        (7.49) 

subject to              

mjXg j ,...,2,1,0)( =≤           (7.50) 

nixxx iii ,...,2,1,maxmin =≤≤           (7.51) 

 

7.5.2 Proposed MGT 

A modified game theory approach was proposed by Rao and Freiheit [166] where the 

worst function value for any particular objective function is obtained by the 

maximum/minimum of its value evaluated at optimum value for each one of the objective 

functions except the particular objective function under consideration. This works 

satisfactorily as long as the objective functions are conflicting in nature i. e., if one 

objective function increases then other objective function decreases. In general, it cannot 

be assumed that all objective functions are conflicting in many engineering applications; 

so there is need to use an alternative procedure for the selection of worst value of each 

objective function in order to apply the modified game theory for the multi-objective 

optimization. In the proposed MGT, the selection of the worst value for each of the 

objective functions is made differently. The following algorithm is proposed for 

implementing the new MGT with modified PSO.  
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1. Minimize each of the k objectives stated in equation (7.49) subject to the 

constraints of equations (7.50) and (7.51) by using the modified PSO and find the 

corresponding optimal values of the objectives as )( *
ii Xf


. 

2. Maximize each of the k objectives stated in equation (7.49) subject to constraints 

of equations (7.50) and (7.51) by using the modified PSO and find the worst 

values of the objectives as wiF . 

3. Normalize each of the objectives so that no objective is favored by its magnitude 

and also assures that it lies between zero and one: 

)(
)()(

)(
*

*

iiwi

iii
ni XfF

XfXf
Xf 




−
−

=           (7.52) 

where wiF is the worst value of the ith )( *
ii Xf


 objective function and  is the 

optimum value (best) obtained in step 1 of the ith

4. Formulate a supercriterion 

 objective. 

)(YF


 as follows: 

SFCYF −=)(


          (7.53) 

where 

.....)()( 2211 ++= XfCXfCFC nn



       

   )()....1()( 121)1(1 XfCCCXfC nkkknk


−−− −−−−++    (7.54) 

[ ]∏
=

−=
k

i
ni XfS

1

)(1


          (7.55) 
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 where 1,,2,1,10 −=≥≤ kiCi           (7.56) 

5. Minimize )(YF


to find *Y


 which yields the solution of the multiobjective 

optimization problem stated in equations (7.48) to (7.51). 

 

7.5.3 Test Problem for Multi-objective optimization using modified game theory 

To demonstrate the computational efficiency and the quality of results obtained 

using the new modified game theory, the multi-objective optimization problem presented 

by Deb et al. [53]  is considered as the test problem:  

Find X


 which minimizes 


















 −−−= ∑
=

3

1

2

1 3
1exp1)(

i
ixXf


                             (7.57) 

and   
















 +−−= ∑
=

3

1

2

2 3
1exp1)(

i
ixXf


 for -4 ≤ ix  ≤ 4 , i = 1,2,3.     (7.58) 

The Matlab code of the new MGT used the PSO parameters - population size = 50, imax

21 cc =

= 

2000, = 2, iwmax= 0.9, iwmin 1and01.0 maxmax == if VV


= 0.3,  for all i, and stopping 

convergence criterion = 10-8

54715.0321 −=== xxx

 for over 150 continuous iterations of the algorithm - and the 

resulting optimal solution is given by and C1 = 0.1. This solution 

can be seen to be a particular Pareto-optimal solution. This optimum solution lies in the 
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optimal solution range given in the Deb’s paper. Deb measures the extent of convergence 

to a known set of Pareto-optimal set which was explained in detail in his paper. The mean 

values for this convergence matrix using Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) for real coded and binary coded algorithms are 0.001931 and 0.002571, 

respectively. The present program was run 20 times and it was found that each run 

yielded the same optimal solution, accuracy upto 4th decimal places, which makes the 

mean variation from the optimum solution equal to 0.000002 

 

(almost equal to zero).   

This establishes the computational efficiency of the proposed modified PSO with new 

modified game theory algorithm.   

7.6  ENGINEERING APPLICATIONS WITH MULTIPLE 
OBJECTIVE FUNCTIONS 
 

Four engineering design problems with multiple objective functions are solved to 

validate the proposed new MGT approach. The optimum designs of a 2-bar truss and an 

I-beam are considered using the proposed modified PSO algorithm, coupled with the new 

MGT approach, with two objective functions in each case. The optimal designs of a 25-

bar truss and a gear box are solved by considering three objective functions in each case 

using the procedure developed in this work. 

 

7.6.1 Design of a 2-bar truss 

The 2-bar truss [169] shown in Fig 7.4 is symmetric about the y-axis. The design 

problem corresponding to the truss is formulated as: 
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          (7.59) 

to minimizes { })(),( 21 XfXf


          (7.60) 

where  

refAxhxXf 2
121 12)( += ρ


 = Weight of the truss       (7.61) 

refAxEx
xxPh

Xf
2

2
1

4
1

5.12
1

2 22
)1()1(

)(
++

=


 = Total displacement of joint 3     (7.62) 

subject to the stress constraints 

2,1,0)( 0 =≤− iXi σσ


          (7.63) 

where 

refAxx
xxP

X
21

2
11

1 22
)1()1(

)(
++

=


σ  = stress induced in member 1        (7.64) 

refAxx
xxP

X
21

2
11

2 22
)1()1(

)(
+−

=


σ  = stress induced in member 2      (7.65) 

maxmin
iii xxx ≤≤    ;    i = 1,2          (7.66) 

with min
1x  = 0.1, min

2x  = 0.1, max
1x  = 2.0 and max

2x  = 2.5, 

,1030 6 psiE ×= ,/283.0 3inlb=ρ ,10000 lbP = ,200000 psi=σ  

21and.100 inAinh ref ==  
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Figure 7. 5 Two-bar truss 

 

The matlab code using the PSO parameters, population size = 50, imax 21 cc == 1500, = 2, 

iwmax= 0.9, iwmin 2and1.0 maxmin == ii VV


= 0.4,  for all i, and stopping convergence 

criteria = 1e-10 for over 120 continuous iterations in the algorithm, is used to find the 

optimal solution and given in Table 7.3. The constraints for the optimum solution for 

minimization of f1 are 0 and -2.413e4. The constraints for the optimum solution for 

minimization of f2 are -1.5968e4 and -2.0293e4. The constraints for the optimum 

solution for multi-objective optimization of f1 and f2 are -0.7784e4 and -2.1603e4. The 

implication of C1 = 1 implies C2 = 0 in the optimum solution is that it emphasizes f1 

compared to f2. 

x • 

2 1 

3 

Member 1 Member 2 

450 

y 

x 

h 

• 

• • 

• 

• 

• 



www.manaraa.com

221 
 

 
 

 

Table 7.3 Comparison of optimal solutions of 2-bar truss 
 

Quantity Rao [169] Present solution 

)(1 Xf


 

Design variables 

36.1493 

[0.6743,0.5295] 

36.1273 

[0.6577,0.5333] 

)(2 Xf


 

Design variables 

0.0182 

[0.8612,2.5] 

0.0182 

[0.8645,2.5] 

{ })(),( 21 XfXf


 

Design variables 

C

81.4137, 0.0408 

1 

[0.7681,1.1408] 

 

59.9527,0.0554 

[0.7680,0.8401] 

 1 

 

 

7.6.2 Design of an I-Beam 

A simply supported I-beam [78] is shown in Fig 7.5. The design variables and 

applied loads P and Q are also shown in Fig 7.5 and the optimization problem is 

formulated as follows: 

Find  
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3

2

1

x
x
x
x

X


           (7.67) 

which minimizes  ),( 21 ff           (7.68) 

where   

)2(2)( 413421 xxxxxXf −+=


  = Area of cross section      (7.69) 
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= Deflection at the mid span        (7.70) 

12
)]2(34[2)2( 411

2
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3
413 xxxxxxxxx

I
−++−

=        (7.71) 

subject to stress constraint 

                     b
Z

Z

Y

Y

Z
M

Z
M

σ≤+           (7.72) 

where MY, MZ

bσ

 are the maximal bending moments in the Y and Z directions, respectively 

and is the permissible bending stress for the material. This stress constraint can be 

rewritten as:  

                16
2)2(

15000
)]2(34[2)2(

180000
3
24

3
341

2

411
2
442

3
413

1 ≤
+−

+
−++− xxxxx

x
xxxxxxxxx

x
  (7.73) 

The geometric constraints are given by 

8010 1 ≤≤ x , 5010 2 ≤≤ x , 59.0 3 ≤≤ x  and 59.0 4 ≤≤ x       (7.74) 

The length of the I-beam is L = 200 cm, external loads are P = 600 kN and Q = 50 kN, 

the Young’s modulus of elasticity, E = 2 x 104 kN/cm2
bσ and = 16 kN/cm2. The matlab 

code uses the PSO parameters, namely, population size = 50, imax 21 cc == 2000, = 2, 

iwmax= 0.9, iwmin 5and05.0 maxmin == ii VV


= 0.3,  for all i, and stopping convergence 

criteria = 1e-8 for over 150 continuous iterations in the algorithm and the resulting 

optimal solution is shown in Table 7.4. The stress constraint for the optimum solution for 

minimization of f1 is -1.164e-10. The stress constraint for the optimum solution for 

minimization of f2  is -13.9875. The stress constraint for the optimum solution for multi-

objective optimization of f1 and f2  is -7.8443e-7. 
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Figure 7.6 An I-beam 

 
 

Table 7.4 Comparison of optimal solutions of an I-Beam 
 

Quantity Huang et al [78] 
Hajela and Shih 

[73] 
Present solution 

)(1 Xf


  127.4124 - 127.4129 

Design variables [60.47,41.44,0.9,0.9] - [60.65,41.35,0.9,0.9] 

)(2 Xf


  0.0059 - 0.0059 

Design variables [80,50,5,5] - [80,50,5,5] 













)(

)(

2

1

Xf

Xf




 

276.4525 206.14 132.5374 

0.0143 0.0205 0.0375 

Design variables 

C

[80,50,0.9,2] 

1  

[80,39.79,0.9,1.72] 

 

[80,34.53,0.9,0.9] 

1 
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7.6.3 Design of a Gear box 

 

Figure 7.7 Gear box 
 

The multiobjective optimization problem of the gear box [119], shown in Fig 7.6, 

can be stated as follows 

Find  
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=        (7.76) 
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2shaft in  developed Stress
1.0

10575.1
745

)( 3
7

8
2

32

5

3 =

×+








=
x

xx
x

Xf


                (7.79) 

subject to [119]  

)constraint teeth of stress (bending0127
3
3

2
21

1 ≤−=
xxx

g       (7.80) 

)constraint teeth of stress(contact 015.397
2
3

2
21

2 ≤−=
xxx

g       (7.81) 

1)shaft  ofnt displaceme e(transvers0193.1
4
632

3
4

3 ≤−=
xxx
xg       (7.82) 

2)shaft  ofnt displaceme e(transvers01
93.1

4
732

3
5

4 ≤−=
xxx
x

g       (7.83) 

g5 to g9

040325 ≤−= xxg

 are related to torque : 

, 012
2

1
6 ≤−=

x
xg , 05

2

1
7 ≤−=

x
xg , 05.19.1 648 ≤+−= xxg  and  

01.19.1 759 ≤+−= xxg           (7.84) 

Stress constraints in shafts 1 and 2 are 

01300)(210 ≤−= Xfg


 and 01100)(311 ≤−= Xfg


      (7.85) 

The geometric constraints are given by 

6.36.2 1 ≤≤ x , 8.07.0 2 ≤≤ x , 2817 3 ≤≤ x , 3.83.7 4 ≤≤ x , 3.83.7 5 ≤≤ x , 9.39.2 6 ≤≤ x

and 5.50.5 7 ≤≤ x                       (7.86) 

The matlab code uses the PSO parameters, namely, population size = 50, imax

21 cc =

= 2000, 

= 2, iwmax= 0.9, iwmin 2.0and1.0 maxmin == ii VV


= 0.3,  for all i, and stopping 

convergence criteria = 1e-8 for over 150 continuous iterations in the algorithm to find the 
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optimal solution given in Table 7.5. The active constraint for the optimum solution for 

minimization of f1 is g7. The nearest to zero constraints, namely g7 and g8 for the 

optimum solution for minimization of f2 are -5.465e-9 and -1.557e-9. The nearest to zero 

constraint is g7 and its value for the optimum solution for minimization of f3 is -8.333e-

11. The nearest to zero constraint is g7 and its value for the optimum solution for multi-

objective optimization of f1 , f2 and f3

 

 is -1.5714e-5. 

Table 7.51 Comparison of optimal solutions of Gear box design 
 

Objective function Huang et al [78] Present solution 

)(1 Xf


 

Design variables 
- 

2939.275 

[3.5,0.7,17.0,7.3,7.3,3.1,5.2] 

)(2 Xf


 
Design variables 

- 
693.0318 

[3.6,0.719,28.0,7.75,7.69,3.9,5.30] 

)(3 Xf


 

Design variables 
- 

754.314 

[3.6,0.719,28.0,7.78,7.30,3.33,5.5] 

{ })(),(),( 321 XfXfXf


 

Design variables 

C

C
1 

3425.0,879.8,797.6 

2 

[3.58,0.71,18,8.24,8.23,3.61,5.4] 

Not given 

Not given 

3295.2857,693.0359,754.3154 

[3.5,0.7,17.0,7.75,7.3,3.9,5.5] 

0.3525 

0.3555 

 

 

7.6.4 Design of a 25-bar truss 

The 25-bar truss (shown in Fig 7.7) is considered to support two load conditions 

given in Table 7.6 and is to be designed to minimize (i) the weight, (ii) sum of deflections 
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of node 1 under the two load conditions and (iii) negative of the fundamental natural 

frequency of the truss subject to stress and buckling constraints. The allowable maximum 

stress limit, maxσ , for all members is assumed to be same in both tension and 

compression. The cross section of each member of the truss is assumed to be thin tubular 

with nominal diameter D and thickness t = D/100 so that the area of the member is 

.0099.0 2Dπ  The diameters of these members are grouped into eight different sets D-1 

to D-8 as shown in Table 7.7 and the eight diameters D-1 to D-8 are chosen to be the 

design variables. The minimum and maximum allowable limits for each of the variables 

(D-1 to D-8) are taken as 0.04 m and 0.32 m, respectively. The buckling stress in the ith

25,,2,1,
8
01.100

2 =
−

= i
L

AE

i
bi

πσ

 

member is calculated as 

         (7.87) 

The objectives of the multiobjective optimization problem of the 25-bar truss are stated 

as follows 

∑
=

=
25

1
1 8125.9)(

i
ii lAXf ρ


          (7.88) 

∑
=

++=
2

1

2/1222
2 )()(

p
zpypxpXf δδδ


         (7.89) 

nXf ω−=)(3


            (7.90) 

where i is the element number, xpδ , ypδ and zpδ are the x, y and z components of 

displacement of node 1 under load condition p (p = 1, 2), and nω is the fundamental 

natural frequency of vibration of the truss. The constraints are: 

max)( σσ ≤Xip


, 2,1,25,...,2,1 == pi          (7.91) 
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bpip X σσ −≤− )(


, 2,1,25,...,2,1 == pi         (7.92) 

where )(Xip


σ is the stress in element i in load condition p.   

The data are taken as: Young’s modulus of elasticity, paE 10109.6 ×= , material density, 

3/2770 mkg=ρ  and allowable maximum stress limit, pa8
max 1076.2 ×=σ . The bounds 

for the variables c1 and c2

 

 used in the supercriterion of MGT are taken as 0.1 and 0.7, 

respectively. These values are suggested for cooperative game theory used in the 

literature.  

Table 7.6 Loads acting on Twenty five bar truss 
 

 Load condition 1 ( N) 

 Node-1 Node-2 Node-3 Node-4 

F 0 x 0 0 0 

F 88960 y -88960 0 0 

F -22240 z -22240 0 0 

 Load condition 2 ( N) 

F 4448 x 0 224 224 

F 44480 y 44480 0 0 

F -22240 z -22240 0 0 
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Figure 7.8 Twenty five bar truss 
 

  
Table 7.7 Diameter groups for the elements of the truss 

 
Set No. Area groups 

D-1 D1 

D-2 D2=D3=D4=D5 

D-3 D6=D7=D8=D9 

D-4 D10=D11 

D-5 D12=D13 

D-6 D14=D15=D16=D17 

D-7 D18=D19=D20=D21 

D-8 D22=D23=D24=D25 
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(i) Solution with continuous design variables: 

The matlab code uses the PSO parameters: population size = 50, imax

21 cc =

= 2000, 

= 2, iwmax= 0.9, iwmin 3.0and01.0 maxmin == ii VV


= 0.4,  for all i, and stopping 

convergence criteria = 1e-8 for over 150 continuous iterations in the algorithm. The 

optimal solution is given in Table 7.8 and the results are compared with those available in 

the literature in Table 7.10. The constraints are not normalized in this optimization 

problem. The active constraints for the optimum solution for minimization of f1 are 

buckling load for the element numbers 2, 5, 7, 8, 19, 20 for load condition 1 with 

constraint values, -3.576e-7, -3.427e-7, -3.248e-6, -3.218e-6, -8.196e-7, -7.897e-7 

respectively and 13,16, 24 for load condition 2 with constraint values, -6.23e-4, -1.259e-

6, -6.705e-7 respectively.  The constraints which are close to being active for the 

optimum solution for maximization of f2

 

 are buckling load for the element numbers 3, 6, 

8, 9 for load condition 1 with constraint values, -0.3677, -0.3677, -0.2198, -0.2198 

respectively and 24 for load condition 2 with constraint value, -0.151. There are no active 

constraints nor close to the active constraints found for all the other optimum solutions in 

the Table 7.8. 
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Table 7.8 Optimal solution of twenty five bar truss with continuous variables 
 

Quantity Min. of f1 Min. of f2 Min. of f3 Max. of f1 Max. of f2 Max. of f3 Multi-

objective 

D-1 

D-2 

D-3 

D-4 

D-5 

D-6 

D-7 

D-8 

0.04 

0.1286 

0.1243 

0.04 

0.0508 

0.1084 

0.1421 

0.1290 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.04 

0.1268 

0.1253 

0.1546 

0.04 

0.32 

0.2489 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.243183 

0.130186 

0.123353 

0.309489 

0.076901 

0.109956 

0.141700 

0.128059 

0.3068 

0.32 

0.32 

0.04 

0.32 

0.1577 

0.32 

0.0978 

0.04 

0.151133  

0.159884 

0.094876 

0.04 

0.194687 

0.210814 

0.32 

Objective 

function 

value 

 

1031.4009 

 

0.007925 

 

-114.0441 

 

7269.9078 

 

0.049019 

 

-26.49427 

2981.4416 

0.0239586 

-104.3978 
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(ii) Solution with mixed discrete design variables: 

The 25-bar truss problem is considered as a mixed discrete multiobjective 

optimization problem. The design variables (D-1 to D-4) are assumed to be discrete 

variables with lower and upper bounds as D = 40 mm and D = 320 mm, respectively, and 

are permitted to take values only in increments of 10 mm within the range. Thus, the 

permissible values of each of the four design variables are given by 40 mm, 50 mm, 60 

mm, 70 mm, …, 310 mm and 320 mm.  The design variables (D-5 to D-8) are assumed to 

be continuous variables. The lower and upper bounds for these continuous variables 

remains same as in the case of continuous variable problem. The modified PSO with 

CDA is used to solve this mixed discrete design optimization problem. The PSO 

parameters used are same as in the case of continuous variable problem. The results of 

optimization are shown in Table 7.9 and are compared with those available in the 

literature in Table 7.10. The constraints are not normalized in this optimization problem. 

The active constraints for the optimum solution for minimization of f1 are buckling load 

for the element numbers 14, 15 for load condition 1 with constraint values, -6.407e-7, -

5.960e-7  respectively and 13,16, 24 for load condition 2 with constraint values, -1.136e-

5, -6.109e-7, -1.198e-5 respectively.  The constraints which are close to being active for 

the optimum solution for maximization of f2 are buckling load for the element numbers 

19, 20 for load condition 1 with constraint values, -3.973e-4, -3.973e-4 respectively and 

16, 24 for load condition 2 with constraint values, -0.0207, -0.0901. There are no active 

constraints nor close to the active constraints found for all the other optimum solutions in 

the Table 7.9. 
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Table 7.9 Optimal solution of twenty five bar truss with mixed discrete variables 

 
Quantity Min. of f1 Min. of f2 Min. of f3 Max. of f1 Max. of f2 Max. of f3 Multi-

objective 

D-1 

D-2 

D-3 

D-4 

D-5 

D-6 

D-7 

D-8 

0.04 

0.13 

0.13 

0.04 

0.04999 

0.10846 

0.14240 

0.12885 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.04 

0.13 

0.13 

0.15 

0.04000 

0.32000 

0.24580 

0.32000 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.23 

0.13 

0.13 

0.16 

0.04898 

0.10976 

0.14183 

0.12879 

0.32 

0.32 

0.32 

0.04 

0.32000 

0.10811 

0.32000 

0.09808 

0.04 

0.15 

0.16 

0.09 

0.04000 

0.19766 

0.21274 

0.32000 

Objective 

function 

value 

 

1048.8444 

 

0.007925 

 

-113.1737 

 

7269.9078 

 

0.047364 

 

-25.47221 

3005.9747 

0.0239842 

-104.6054 
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Table 7.10 Comparison of optimal solutions of twenty five bar truss 
 

Quantity 
Rao[170] (FPS 

units used) 
Sunar[197] 

Present 

solution 

(continuous) 

Present 

solution 

(mixed 

discrete) 

C

C
1 0.1433 

2 0.3628 

- 

- 

0.1 

0.1 

0.1 

0.1 

)(1 Xf


 

)(2 Xf


 

)(3 Xf


 

596.5181 (2600*) 

0.9401 (0.02387*) 

-100.2154 

3033.65 

0.0232 

-103.141 

2981.4416 

0.0239586 

-104.3978 

3005.9747 

0.0239842 

-104.6054
 

* indicates the objective function value in SI units. 

 

There are no active constraints nor close to the active constraints found for all the  

optimum solutions in the Table 7.10. 

 

7.6.5 Discussion 

The solution obtained for the problems solved for single optimization problems 

illustrate the computational efficiency of the proposed modified PSO.  It was evident 

from the no. of function evaluations found in other evolutionary algorithms like genetic 

algorithm compared to our algorithm. This was extended to multi-objective optimization 

problems using the modified game theory and the results obtained to the design problems 

solved in this section are convincing with respect to other results reported in the 

literature. 
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7.7 SUMMARY 

This chapter presents algorithms based on modified PSO to solve all types of 

engineering optimization problems involving single objective or multiple objectives with 

continuous, discrete and/or mixed design variables with constraints. Because of the 

convergence difficulties experienced with the original PSO algorithm with a constant 

value of the maximum velocity limit, the dynamic velocity function approach has been 

used to speed up the convergence. The bounce method provides significant improvement 

in the performance of the algorithms to overcome stagnation of the population. Results of 

single and multi objective optimization problems like welded beam design and pressure 

vessel design showed that the algorithm converges to the optimal solution faster than the 

original PSO algorithm. When the new MGT, combined with the modified PSO, is used 

to solve multiobjective optimization problems, the best compromise (optimal) solution 

from the Pareto-optimal front has been found efficiently. The results of the 25-bar truss 

multiobjective optimization problem illustrate the effectiveness and efficiency of the new 

approach when all the objective functions are not totally conflicting. The results obtained 

for the 25-bar truss with all design variables taken as continuous or as mixed discrete are 

found to be comparable to another. In the next chapter 7, a new method was proposed 

using modified PSO, modified game theory and vertex method to solve multi-objective 

optimization problems with uncertain parameters. 
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CHAPTER 8 
 

MULTI-OBJECTIVE OPTIMIZATION OF UNCERTAIN 
ENGINEERING SYSTEMS USING PARTICLE SWARM 

OPTIMIZATION  
 

8.1 OVERVIEW 

This chapter proposes a novel method using modified particle swarm optimization 

(PSO) based algorithm to solve multi-objective optimization of uncertain engineering 

problems involving different types of design variables (continuous, discrete and/or 

mixed). The information for each of the uncertain parameters is assumed to be available 

in the form of percentage tolerance on the data, implying the existence of large epistemic 

uncertainty in the parameters. The vertex method, described in section 8.2, is used to 

reduce the widening of the function value interval due to multi-occurrences of variables 

when interval analysis is used in finding the response function of the system. The 

computational aspects of the vertex method are described in section 8.3. A modified 

game theory approach (MGT) is coupled with the modified PSO to solve multiobjective 

optimization problems as described in section 8.4. A dynamic penalty function is used to 

handle constraints in all constrained optimization problems. A standard weighted convex 

sum is coupled with the modified PSO to solve a two objective welded beam design 

optimization problem. This chapter is concluded by a summary in the last section.
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8.2 ENGINEERING APPLICATION 

8.2.1 GENERAL MULTIOBJECTIVE OPTIMIZATION PROBLEM 

A multiobjective optimization problem (MOP) is solved using modified PSO with 

modified game theory as described in section 7.5 of chapter 7.  Two engineering design 

problems are solved to validate the proposed approach using the modified PSO coupled 

with the vertex method. The vertex method is used to calculate the belief function, as one 

of the objectives, for the safe design of the system. The design of a welded beam, with 

continuous design variables, is considered by applying the dynamic velocity function to 

limit the maximum velocity of the design variables along with bounce method in the 

algorithm. The design of a 25-bar truss with continuous as well as mixed discrete design 

variables are considered where closest discrete approach 

 

(CDA) is used to handle the 

discrete design variables. 

8.2.2 Design of a welded beam 

The data are: 6000=P in, ,in 14=L  Young’s modulus of the beam, 

 ,psi1030 6×=E  shear modulus of the beam, ,psi1012 6×=G maximum deflection 

allowed on the beam, ,in 25.0max =δ  maximum allowable shear stress in the beam, 

,psi600,13max =τ and  maximum allowable bending stress in the beam, 

 .psi 000,30max =σ This design problem is solved with different number of uncertain 

parameters in each of the following cases. The information for each of the uncertain 

parameters is assumed to be available in the form of percentage tolerance on the 

parameters, implying the existence of large epistemic uncertainty in the parameters. We 

assume equal evidence for positive and negative tolerances on these parameters. Belief is 
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calculated for safe design (satisfying all constraints) using vertex method as described in 

section 8.3. A standard weighted convex sum ( 21 ff + ) is used for this two objective 

optimization as in this case the magnitudes of both 1f and 2f  are comparable. 

 

Case a: Four uncertain parameters 

In this case, all the four design variables are considered as uncertain parameters. 

The uncertainty on these parameters is expressed as percentage tolerance on the nominal 

values of the parameters. Let ±x% tolerance is given on any uncertain parameter. This 

information can be translated as equal intervals defined as [(1-x/100), 1] and [1, 

(1+x/100)]. An equal evidence of 0.5 each for these intervals is assumed. For example, 

±1% tolerance on any parameter can be translated as [0.99, 1.00] and [1.00, 1.01] times 

the parameter with 0.5 evidence each for the intervals.  

 

Case b: Eleven uncertain parameters 

In this case, all the parameters in equations (7.22) to (7.40) including the design 

parameters are considered as uncertain parameters. These uncertain parameters are 

4321 ,,, xxxx , P, L, E, G, maxδ , maxτ and .maxσ The uncertainty is assumed to be of similar 

form  as in case a.  

The proposed modified PSO algorithm is implemented in a matlab code to include 

dynamic velocity function for the maximum velocity, bounce method for the position (or 

variable value) which exceeds the specified variable limits, penalty function approach for 

constraint violation and vetex method to calculate belief for satisfying all constraints of 

the design. For the PSO parameters, namely, population size = 10, imax 21 cc = = 800, = 2, 
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iwmax = 0.9, iwmin 1and01.0 maxmin == ii VV


 = 0.3,  for all i, stopping convergence criterion 

(in terms of change in the objective function value) = 81 −e  for over 200 continuous 

iterations, the optimum solutions with four uncertain parameters and eleven uncertain 

parameters with ±1% tolerance assumed on the design parameters as given in Table 8.1 

are obtained. The variation of material cost with increase in percentage tolerance on the 

design variables is as shown in Figure 8.1. The default value of ±2% tolerance on all 

other parameters is assumed in case b. The belief for case a is found to be constant at 

0.875. The belief for case b is found to be within the range 0.828 and 0.859. The active 

constraint values at the optimum solution for case a are found to be: 11
1 10x36.4)( −−=xg , 

-7
2 10x 38.1)( −=xg , 15

3 10x 24.5)( −−=xg , and 12
7 10x18.8)( −−=xg . There are no 

active constraints are found for the other optimum solutions in Table 8.1. 

 

Table 8.1 Comparison of optimum solutions for the design of welded beam 

Design variables Optimum 

Solution 

Present solution 

case a (4 

uncertain 

parameters) 

Present solution 

case b (11 

uncertain 

parameters) 

1x  0.2443689758 0.246833737 0.249724604 

2x  6.2177066318 6.217170236 5.847808155 

3x  8.2914713905 8.375730427 8.500404914 

4x  0.2443689758 0.246833892 0.249870491 

)( *Xf


 2.3809871315 2.429322628 2.432504205 
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(a) 

 

(b) 

Figure 8.1 Variation of cost vs percentage tolerance on design variables for cases (a) 

and (b) 
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8.2.3 Design of a 25-bar truss 

The 25-bar truss as described in section 7.6.4 of chapter 7 is considered with the 

exception that the maximization of belief is considered along with other three objective 

functions in the optimization problem. Thus, the truss is designed to minimize (i) the 

weight, (ii) sum of deflections of node 1 under the two load conditions, (iii) negative of 

the fundamental natural frequency of the truss and (iv) belief for safety design, subject to 

stress and buckling constraints.  

The objectives of the multi-objective optimization problem of the 25-bar truss are stated 

as follows 

∑
=

=
25

1
1 8125.9)(

i
ii lAXf ρ


            (8.1) 

∑
=

++=
2

1

2/1222
2 )()(

p
zpypxpXf δδδ


           (8.2) 

nXf ω−=)(3


              (8.3) 

designsafetheforBelieff −=4            (8.4) 

where i is the element or bar number, xpδ , ypδ and zpδ are the x, y and z components of 

displacement of node 1 under load condition p (p = 1, 2), and nω is the fundamental 

natural frequency of vibration of the truss. The constraints are: 

max)( σσ ≤Xip


, 2,1,25,...,2,1 == pi            (8.5) 

bpip X σσ −≤− )(


, 2,1,25,...,2,1 == pi            (8.6) 

where )(Xip


σ is the stress in element i in load condition p.   
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The data are taken as: Young’s modulus of elasticity, paE 10109.6 ×= , material density, 

3/2770 mkg=ρ  and allowable maximum stress limit, Pa8
max 1076.2 ×=σ . The lower 

and upper bounds for the variables c1, c2, and c3

 

 used in the supercriterion of MGT are 

taken as 0.1 and 0.7, respectively. These values have been suggested for cooperative 

game theory used in the literature. The information for each of the uncertain parameters 

is assumed to be available in the form of percentage tolerance on the parameters. We 

assume equal evidence for positive and negative tolerances on these parameters. Belief is 

calculated for safe design (satisfying all constraints) using vertex method as described in 

sections 5.2 and 5.3 with  ±1% tolerance on the design parameters is assumed in both 

cases. There are no active constraints nor close to the active constraints found for all the  

optimum solutions of the uncertainty cases in the Tables 8.2, 8.3 and 8.4. The optimum 

solutions for the uncertainty cases are greater for minimization problems and smaller for 

maximization problems than the corresponding optimum solutions for the deterministic 

cases. This is the reason for no active constraints for the optimum solutions for the 

uncertainty cases. 

8.2.3.1 Solution with continuous design variables: 

The matlab code uses the PSO parameters: population size = 24, imax

21 cc =

= 2000, 

= 2, iwmax= 0.9, iwmin 3.0and01.0 maxmin == ii VV


= 0.4,  for all i, and stopping 

convergence criteria = 1e-8 for over 150 continuous iterations in the algorithm. The 

optimal solution is given in Table 8.2 and the results are compared with those available in 

the literature in Table 8.4. 
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Table 8.2 Optimal solution of twenty bar truss with continuous variables 

Quantity Min. of f1 Min. of f2 Min. of f3 Max. of f1 Max. of f2 Max. of f3 Multi-

objective 

D-1 

D-2 

D-3 

D-4 

D-5 

D-6 

D-7 

D-8 

0.04 

0.13 

0.1256 

0.04 

0.0532 

0.1096 

0.1437 

0.1302 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.04 

0.1282 

0.1266 

0.152 

0.04 

0.32 

0.2463 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.243183 

0.130186 

0.123353 

0.309489 

0.076901 

0.109956 

0.141700 

0.128059 

0.3068 

0.32 

0.32 

0.04 

0.32 

0.1577 

0.32 

0.0978 

0.04 

0.1499 

0.1499 

0.12 

0.0401 

0.2 

0.2078 

0.32 

Objective 

function 

value 

 

1054.123 

 

0.007925 

 

-113.744 

 

7269.9078 

 

0.049019 

 

-26.49427 

2979.8 

0.0255 

-105.997 
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8.2.3.2 Solution with mixed discrete design variables: 

The 25-bar truss problem is considered as a mixed discrete uncertain multi-

objective optimization problem. The design variables (D-1 to D-4) are assumed to be 

discrete with lower and upper bounds as D = 40 mm and D = 320 mm, respectively, and 

are permitted to take values only in increments of 10 mm within the range. Thus, the 

permissible values of each of the four design variables are given by 40 mm, 50 mm, 60 

mm, 70 mm, …, 310 mm and 320 mm.  The design variables (D-5 to D-8) are assumed to 

be continuous variables. The lower and upper bounds for these continuous variables 

remain same as in the case of continuous variable problem. The modified PSO with CDA 

is used to solve this mixed discrete design optimization problem. The matlab code uses 

the PSO parameters:  population size = 10, imax 21 cc = = 800, = 2, iwmax = 0.9, iwmin

2.0and01.0 maxmin == ii VV


 = 

0.3,  for all i, stopping convergence criterion (in terms of 

change in the objective function value) = 81 −e  for over 200 continuous iterations. The 

results of optimization are shown in Table 8.3 and are compared with those available in 

the literature in Table 8.4.  In all these cases, the maximum belief for the safe design is 

found to be 1. With increase in uncertain parameters, we observe the objective function 

values are increased as indicated from Tables 8.2 and 8.3. This increase for 25-bar truss is 

more dominant when compared to welded beam problem due to more number of 

constraints in case of 25-bar truss problem. The multi-objective solution for uncertain 

optimization using modified game theory indicated in Table 8.4 is compared with latest 

available results from literature. We observe that relative importance to f1 in our optimum 

solution is high compared to other reported solutions.  
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Table 8.3 Optimal solution of twenty bar truss with mixed discrete variables 

Quantity Min. of f1 Min. of f2 Min. of f3 Max. of f1 Max. of f2 Max. of f3 Multi-

objective 

D-1 

D-2 

D-3 

D-4 

D-5 

D-6 

D-7 

D-8 

0.04 

0.14 

0.13 

0.05 

0.0616 

0.1239 

0.1440 

0.1379 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.06 

0.14 

0.13 

0.05 

0.0589 

0.1468 

0.1748 

0.1486 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.32 

0.23 

0.13 

0.13 

0.16 

0.04898 

0.10976 

0.14183 

0.12879 

0.32 

0.32 

0.32 

0.04 

0.32000 

0.10811 

0.32000 

0.09808 

0.05 

0.15 

0.15 

0.06 

0.0791 

0.1245 

0.1971 

0.1500 

Objective 

function 

value 

 

1177.5 

 

0.007925 

 

-77.2603 

 

7269.9078 

 

0.047364 

 

-25.47221 

1597.819 

0.0333 

-72.0487 
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Table 8.4 Comparison of optimal solutions of 25 bar truss 

Quantity 
Sunar 

[197] 

optimal 

solution 

(continuous) 

Kiran and 

Rao [107] 

optimal 

(mixed 

discrete) 

Kiran and 

Rao [107] 

Present 

solution 

(continuous) 

Present 

solution 

(mixed 

discrete) 

C

C

1 

C

2 

- 

3 

- 

- 

0.1 

0.1 

- 

0.1 

0.1 

- 

0.1 

0.1 

0.1 

0.2209 

0.2411 

0.3022 

)(1 Xf


 

)(2 Xf


 

)(3 Xf


 

3033.65 

0.0232 

-103.141 

2981.4416 

0.0239586 

-104.3978 

3005.9747 

0.0239842 

-104.6054
 

2979.8 

0.0255 

-105.997 

1597.819 

0.0333 

-72.0487
 

 

 

8.2.4 Design of a composite simply supported beam 

 

Design the composite laminate to minimize the weight and maximize the critical buckling 

load of the simply supported beam with center load, as shown in Figure 8.2. The 

composite is E-Glass/epoxy laminate. The laminate is symmetrical and consists of 8 

layers with fiber orientations at [90/45/-45/0]s.  
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Figure 8.2 Simply supported composite beam with cross-section shown separately 

 

The longitudinal modulus in the fiber direction can be predicted by using the rule of 

mixtures (ROM) as 

                (8.7) 

The transverse modulus as predicted by inverse ROM formula is given by 

                  (8.8) 

The mechanics of materials approach leads to ROM equation for the in-plane Poisson 

ratio and is given by 



www.manaraa.com

248 
 

 
 

                 (8.9) 

Inplane shear modulus as given by inverse ROM equation is 

                       (8.10) 

The interlaminar shear modulus can be computed with the semiempirical stress-

partitioning parameter (SPP) technique as [14]: 

           (8.11) 

             (8.12) 

              (8.13) 

We have formulated two cases for the optimization problem of the composite simply 

supported beam.  

Case 1: Deterministic optimization problem  

Find t (thickness of the beam) such that 

Maximize 







= 2

32

1 12
)(

L
tE

Xf bxxπ
= buckling load                                        (8.14)    

Minimize =)(2 Xf


 = weight of the composite            (8.15) 

where  is the density of composite material and subject to 

 ,  ,   ,  

, and         (8.16) 

Normalizing the constraints given by equation (8.16) as 
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 ,  ,   ,  , and 

           (8.17) 

 Case 2: Uncertain optimization problem here the problem is formulated with the 

addition of 3rd

designsafetheforBelieff −=3

 objective given by 

  

with the same constraints as stated in the deterministic optimization problem.  

The following are the material properties of the fiber and matrix for the composite 

material:  

Young’s modulus of fiber Ef  = 72.3 GPa, Young’s modulus of matrix Em  = 5.05 GPa, 

fiber volume fraction Vf  = 0.6, Possion’s ratio of fiber  = 0.22, Possion’s ratio of 

matrix = 0.35, and density = 2.076 x103 kg/m3

The strength values are known per unit ply thickness (t = 0.001 m):  

. 

Longitudinal tensile strength F1t = 1020 MPa, transverse tensile strength F2t = 40 MPa, 

inplane shear strength F6 = 60 MPa, longitudinal compressive strength F1c = 620 MPa, 

and transverse compressive strength F2c = 140 MPa. The factor of safety, FS, is assumed 

as 3.5. The weight of the composite, Wc

W

, is given by 

c

In addition, P = 500 N, L = 1 m and all layers have equal thickness. Using laminate 

theory, we design the laminate so that the stresses in the layers are within the maximum 

strength limits divided by the factor of safety and maximum deflection of the beam is less 

 =    where = density of composite and = volume of the composite. 
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than 0.005 m. Assume the width to be equal to two times the thickness of the beam. We 

assume strength values of the lamina to vary linearly with the number of layers (the 

thickness of each layer). The critical buckling load for the beam is calculated using the 

formula given in the Table B.2. In the optimization problems, we are interested to find 

the dimensions of the beam to maximize the load carrying capacity without buckling in 

the axial direction. The maximum deflection for the beam is calculated using the formula 

given for the point load in the Table B.1. The stresses developed in the beam are 

calculated using the procedure described in Appendix-B. The calculation of  for the 

each layer with fiber orientation angle  is done using equation B.11. The bending 

stiffness matrix [D] is calculated by using equation B.25. The longitudinal, transverse and 

inplane shear stresses are calculated using the value of k = 8 in equations B.28, B.29 and 

B.30. The matlab built-in optimization function fmincon( ) is used to solve the single 

objective optimization problems. We have used laminate theory, described in Appendix-

B, to find maximum deflection and stress induced in the composite laminate. The optimal 

solutions for single objective optimization for Case 1 (deterministic) are obtained as 

given in Table 8.5. The constraints as stated by equation 8.17 for the single optimization 

problem solution t = 0.012068 are -0.0002,-0.9987,-0.9861, -0.9918,-0.9978 and -0.9960. 

The first constraint, as stated by equation 8.17,  is only the active constraint for the 

optimum solution t = 0.012067  in Table 8.5. There is no active constraint for all other 

optimum solutions in Table 8.5. Thus, we obtained the range for both buckling load and 

weight of the composite from single objective optimizations as given in Table 8.5. For 

Case 1, the optimum solution using modified game theory with modified PSO is obtained 

as given in Table 8.6. In Case 2, we have taken all the material properties (E1, E2,  
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and ), load, P , and the thickness (t) of beam. The matlab code uses the PSO 

parameters: population size = 12, imax 21 cc == 800, = 2, iwmax= 0.9, iwmin

05.0and001.0 maxmin == ii VV


= 0.4, 

 for all i, and stopping convergence criteria = 1e-8 for over 

350 continuous iterations in the algorithm. The optimum solutions with six uncertain 

parameters with ±5% tolerance as given in Table 8.6 are obtained. We found that the 

optimum solution obtained for uncertain optimization gives lower value for weight of the 

composite where as deterministic optimization gives larger value of critical buckling load 

of the beam. The optimum solutions for the multi-objective optimization problems with 

seven uncertain parameters with ±3%, ±4%,  and ±5%,  tolerances respectively, using the 

modified game theory are obtained as given in Table 8.7. The modified game theory 

gives different solutions from the pareto-optimal solutions with difference in the 

importance of one objective function over other as obtained in Table 8.7. 

 

Table 8.5 Comparison of optimal solutions of single objective composite beam 

Quantity Design Variable t 
Function 

value 

No. of function 

evaluations 

f1

f

 maximization 

1

0.1 

 minimization 0.0120686 

11700 kN 

20.561 kN 

8 

49 

f2

f

 minimization  

2

0.0120676 

 maximization 0.1 

0.604647 kg 

 41.52 kg 

40 

8 
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Table 8.6 Comparison of optimal solutions of composite beam 

Quantity 
Present solution 

for case 1 

Present solution for 

case 2 

x1 

C

= t in m 

C

1 

C

2 

0.063894 

3 

0.7 

0.3 

N/A 

0.019256 

0.7 

0.2 

0.1 

kNXf in)(1



  

kgXf in)(2


 

)(3 Xf


 

3051.94 

16.9504 

N/A 

84.0462 

1.5457 

1 

 

  

 

       

 

 

-0.9932 

-0.9999 

-0.9999 

-0.9999 

-0.9999 

-0.9999 

-0.75386 

-0.99967 

-0.99657 

-0.99797 

-0.99947 

-0.99902 
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Table 8.7 Comparison of optimal solutions of uncertain composite beam 

Quantity 
±3% 

tolerance 

±4% 

tolerance 

±5% 

tolerance 

x1 

C

= t in m 

C

1 

C

2 

0.048646 

3 

0.56110 

0.33874 

0.10016 

0.0201833 

0.7 

0.199999 

0.09999 

0.019256 

0.7 

0.2 

0.1 

kNXf in)(1



  

kgXf in)(2


 

)(3 Xf


 

1346.93 

9.8256 

1 

96.198 

1.6913 

1 

84.0462 

1.5457 

1 

 

  

 

       

 

 

-0.98473 

-0.99998 

-0.99978 

0.99987 

-0.99996 

-0.99993 

-0.78625 

-0.99972 

-0.99703 

0.99824 

-0.99954 

-0.99915 

-0.75386 

-0.99967 

-0.99657 

-0.99797 

-0.99947 

-0.99902 

 

This composite simply supported beam is solved again with assuming equal thickness (t1) 

for the layers with the fiber orientations  0 and 90 degrees and equal thickness (t2) for the 

layers with the fiber orientations  -45 and 45 degrees. The same optimization problems 
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are again solved with two design variables t1 and t2

The optimal solutions for single objective optimization for Case 1 (deterministic) are 

obtained as given in Table 8.8. The constraints as stated by equation 8.16 for the single 

optimization problem solution t

 for both cases namely deterministic 

case and uncertainty case. The bounds on these design variables is [0.001,0.015]. 

1 =  0.015, t2 = 0.015 are -0.9989, -0.9999, 0.9999,-

0.9999, -0.9999 and -0.9999. The constraints as stated by equation 8.16 for the single 

optimization problem solution t1 =  0.002, t2 = 0.001 are  0, -0.9984, -0.9857, -0.9923, -

0.9974 and -0.9952. The constraints as stated by equation 8.16 for the single optimization 

problem solution t1 =  0.001, t2

 

 = 0.002 are  0, -0.9986, -0.9791, -0.9914, -0.9978 and -

0.9940. 

Table 8.8 Comparison of optimal solutions of single objective composite beam 

Quantity Design Variables 
Function 

value 

No. of function 

evaluations 

f1

 

 maximization 

f1

 

 minimization 

t1

t

 =0.015 

2

t

 =0.015 

1

t

 =0.0010 

2

20217.80 kN 

 =0.00202 

 

20.561 kN 

11 

 

51 

f2

  

 minimization 

f2

 

 maximization 

t1

t

 =0.002007 

2

t

 =0.00100 

1

t

 =0.015 

2

0.60092 kg 

 =0.015
 

 

 59.788 kg 

41 

 

11 
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For Case 1, the optimum solution using modified game theory with modified PSO is 

obtained as given in Table 8.9. In Case 2, we have taken all the material properties (E1, 

E2,  and ), load, P , and the thickness (t1 and t2 ) of the layers. The matlab code 

uses the PSO parameters: population size = 12, imax 21 cc == 800, = 2, iwmax= 0.9, iwmin

05.0and001.0 maxmin == ii VV


= 

0.4,  for all i, and stopping convergence criteria = 1e-8 for 

over 350 continuous iterations in the algorithm. The optimum solutions with seven 

uncertain parameters with ±5% tolerance as given in Table 8.8 are obtained. We observe 

as the no. of objective functions increase from two to three and with uncertainty tolerance 

on the parameters, there is considerable shift in the constants C1, C2 and C3

 

 in the 

optimum solution when compared to the deterministic solution.  The results obtained in 

Table 8.9 followed the same trend as the results obtained in the Table 8.6. In both cases, 

the optimum solutions obtained for uncertainty problems minimize more weight to the 

composite but compromise on achieving maximum buckling load on the beam. There are 

no active constraints nor close to the active constraints found for all the  optimum 

solutions in the Table 8.9. 
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Table 8.9 Comparison of optimal solutions of composite beam 

Quantity 
Present solution 

for case 1 

Present solution for 

case 2 

x1 = t1

x

 in m 

1 = t2

C

 in m 

C

1 

C

2 

0.01178 

3 

0.015 

0.1 

0.9 

N/A 

0.00352 

0.00230 

0.7 

0.19998 

0.10002 

kNXf in)(1



  

kgXf in)(2


 

)(3 Xf


 

14367 

47.64 

N/A 

149.06 

2.2587 

1 

 

 

8.3 SUMMARY 

This chapter presents algorithms based on modified PSO coupled with vertex 

method to solve all types of uncertain engineering optimization problems involving 

multiple objectives with continuous, discrete and/or mixed design variables with 

constraints. When convergence difficulties are experienced with the original PSO 

algorithm by using a constant value of the maximum velocity limit, the dynamic velocity 

function approach is found to speed up the convergence. The bounce method provides 

significant improvement in the performance of the algorithms to overcome stagnation of 

the population. When the MGT, combined with the modified PSO and vertex method, is 

used to solve uncertain multi-objective optimization problems; the best compromise 
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(optimal) solution from the pareto-optimal front has been found efficiently. The results of 

the 25-bar truss multi-objective optimization problem illustrate the effectiveness and 

efficiency of the new approach when all the objective functions are not totally 

conflicting. The results obtained for the 25-bar truss with all design variables taken as 

continuous or as mixed discrete are found to be comparable to one another. A novel 

attempt is made to formulate and design a simply supported composite beam optimization 

problem with uncertain parameters. These results are indicative of the power to solve the 

uncertain engineering problems using the proposed method. In the next chapter, a 

comparison of various warranty policies for both repairable and non-repairable products 

with different failure distributions and the formulation of an automobile warranty 

optimization problem are considered. 
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CHAPTER 9 
 

WARRANTY COST OPTIMIZATION FOR AN 
AUTOMOBILE USING PARTICLE SWARM 

OPTIMIZATION 
 

9.1 OVERVIEW 

Different non-renewing warranty policies including the free replacement warranty (FRW) 

policy, pro-rated warranty (PRW) policy, and combined FRW/PRW policy, are 

considered in the context of automobile warranty problems in section 9.2. All these 

warranty policies are non-renewing type. In addition a procedure is described to find the 

total warranty cost from manufacturer’s view point for all types of policies using two 

types of failure distributions, namely the exponential and Weibull distributions for each 

warranty policy in section 9.2. A comparison of different warranty policies for both 

repairable and non repairable products is considered in sections 9.3. The optimization 

problems are solved using a modified particle swarm optimization (PSO) when both 

continuous and discrete design variables are involved. For the discrete optimization 

problem, a closest discrete approach (CDA) to handle discrete design variables, in 

conjunction with the modified PSO is used. The continuous and discrete optimization 

problems are solved for the two failures distributions-exponential and Weibull-for the 

failure of subsystems. A general automobile warranty problem, close to reality, is 

formulated and the total warranty cost is minimized with a constraint on the total failure 
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probability of the system in section 9.4. In section 9.5, a sensitivity analysis is conducted 

by varying the constraint on the total failure probability of the system followed by a 

discussion in section 9.6. This chapter is concluded by a summary in the last section. 

 

9.2 WARRANTY POLICIES 

For the different warranty policies discussed in chapter 3 for both 1-dimensional 

and 2-dimensional warranties, the procedure to find the total expected warranty cost is 

discussed. 

 

9.2.1 One-dimensional warranty policies 

In the one-dimensional warranty policies [16,20,46,82,91,155,157,158], two 

simple policies, namely Free Replacement Warranty (FRW) and Pro-Rated Warranty 

(PRW), a combination policy, namely FRW/PRW, and a procedure to find the expected 

warranty cost from the manufacturer’s view point for two failure distributions 

(exponential and Weibull) are considered. 

 

9.2.1.1 Policy-1: Free Replacement Warranty (FRW) Policy [25, 28] 

The manufacturer agrees to repair or provide replacement for the failed items free 

of charge up to a time W from the time of initial purchase. This is a non-renewing and 

one-dimensional warranty policy applicable for both non-repairable and repairable 

products. 

Case-1: Non- repairable products [24, 26] 
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i) If there is only one failure in the warranty period then the expected total unit cost to the 

manufacturer,   is given by 

                                                                                           (9.1) 

where  is the manufacturer’s or supplier’s cost and F(W) is the failure distribution F(t) 

when t = W.  

ii) If there are multiple failures within the warranty period, 

let N(W) be equal to the number of replacements in the interval [0,W]. The expected 

value of N(W) is given by E[N(W)]= M(W), where M(•) is the ordinary renewal function 

[29, 68] associated with the distribution function F(•). The expected total unit cost to the 

manufacturer,   is given by 

                                                             (9.2) 

For exponential failure time distribution,  

                                                                     (9.3) 

with the mean, the mean failure time, , given by 

                (9.4) 

where  is a constant and , in equation (3.38), is given by . The renewal function 

associated with the distribution function of equation (9.3) is given by [29] 

                                (9.5) 

For Weibull distribution, the failure time distribution is given by 

                                   (9.6) 

where  is the shape parameter of the distribution and , in equation (3.38), is given by 

 and the mean is given by 

             (9.7) 
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where  is the gamma function. There is no analytical solution available for the renewal 

function associated with the distribution function of equation (9.6). The approximate 

solution for for large values of t, is given by [19,29] 

                   (9.8)  

where is the variance given by 

            (9.9)  

Series approximation 

Leadbetter [122] has proposed a series expansion for M(t) in terms of . We assume the 

scale factor of the Weibull distribution, α, to be equal to 1. If F(t) can be expanded into 

an infinite series as  

         (9.10) 

with the coefficient given by   

            (9.11) 

Then the renewal function, M(t), associated with the distribution function represented by 

equation of (9.10), can be represented by the infinite series 

          (9.12) 

where the coefficients  are given by 

             (9.13) 

         (9.14)  

For ,  we obtain an approximation for M(t) as  

                                                                                      (9.15) 
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where k is some finite value and the accuracy of M(t) depends on the value of k used. In 

order to obtain values of the renewal function for other values of the scale factor, α, we 

use the relationship   M(t ; α) = M(t/α ; 1). The series approximation used for the renewal 

function given by equations (9.12) to (9.15) is incorporated into a matlab program to 

compute the desired values of M(t) for the automobile warranty problem considered in 

this work. 

Case-2: Repairable products 

i) When repair is as “good as new”: 

The cost to the manufacturer of replacing a single repairable product is given by 

           (9.16) 

where  is the expected cost of supplying the repaired product and  is the number 

of repairs required in [0, W). The expected total unit cost to the manufacturer,   

is given by [28] 

           (9.17) 

where M(W) is the renewal function. The renewal function is defined as

. 

ii) When repair is not perfect, i.e., products are not as good as new: 

Let the original product have a lifetime  with distribution F(•) and the repaired items 

have lifetimes  identically distributed with distribution G(•). The delayed 

renewal function (see equation 9.20),  is given by [122] 

                    (9.18) 

where  is the ordinary renewal function corresponding to G. The expected total unit 

cost to the manufacturer is given by 
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           (9.19) 

For example, if the failure distribution is exponential, then the delayed renewal function 

is obtained as follows. Let the new and repaired items have exponentially distributed 

lifetimes with respective parameters and . Then 

               (9.20) 

                              (9.21) 

iii) When minimal repair as “good as old”: 

For each item sold, failures over the warranty period occur according to a non-stationary 

Poisson process with an intensity function,  given by  where r(t) is the 

failure rate associated with the failure distribution F(t). The expected number of times the 

product is returned for repairs over the warranty period,  is given by 

          (9.22) 

If the average repair cost is equal to , then the expected repair cost to service the 

warranty is given by 

          (9.23) 

Using equation (9.22), equation (9.23), can be expressed as 

                     (9.24) 

If the failure time distribution is Weibull with parameters , then the failure rate is 

given by 

            (9.25) 

Equations (9.24) and (9.25) yield 

           (9.26) 
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If the seller’s cost is not constant, but is a function of time,   then the renewal 

function can be obtained as [27] 

                  (9.27) 

A standard approach is to express the discounted cost as  where  is the 

discount rate. For the exponential distribution, the expected repair cost to service the 

warranty is given by [28] 

           (9.28) 

The expected total unit cost to the manufacturer,   is given by 

                                                                      (9.29) 

where  is given by equation (9.26) for the Weibull failure distribution model 

(and exponential failure distribution when ) and for discounted cost of an 

exponential distribution as given by equation (9.28).  

 

 9.2.1.2 Policy 2: Pro-Rated Warranty (PRW) Policy 

The manufacturer agrees to refund a fraction of the purchase price when the 

product fails before time W from the time of the initial purchase. The buyer or customer 

receives a cash rebate and is not constrained to buy a replacement product. The cash 

rebate to the customer may be of different types: 

Policy 2a: When the refund is a linear function given by  

        (9.30) 

where is the purchase price of the product. 

Policy 2b: When the refund is a proportional linear function given by  
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        (9.31) 

where  . 

Policy 2c: The refund is a quadratic function given by 

        (9.32) 

Out of all the above forms, the most common type of PRW is policy 2a.  The total 

expected warranty cost from the manufacturer’s view point for this policy can be 

computed as follows. The cost to the manufacture of a single product sold under this 

policy is given by 

            (9.33) 

where  is the actual manufacturing cost of the product, q is rebate function and is the 

lifetime of the product supplied. The rebate function is linear as given by equation (9.30). 

The manufacturer’s expected cost of the product sold under this policy during the period 

[0, W] is given by   

                 (9.34) 

Substituting equation (9.30) and F(0) = 0 into equation (9.34) and simplifying, we obtain 

the manufacturer’s expected warranty cost of the product as 

              (9.35) 

where  

,           (9.36) 

  is the manufacturer’s cost and  is the buyer’s cost. From manufacturer’s view point, 

the average profit per unit = . Using equation (9.35), we obtain  
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Average profit per unit                (9.37) 

where is the expected cost to the customer/consumer and   is the 

supplier’s cost. 

For exponential model, the failure distribution is given by  

          (9.38) 

Substituting equation (9.38) in equation (9.36), we obtain 

          (9.39) 

The expected warranty cost of the product is obtained by substituting equation (9.39) in 

equation (9.35) as 

          (9.40) 

For Weibull model with , the failure distribution is given by 

          (9.41) 

Substituting equation (9.41) into equation (9.36), we obtain 

          (9.42) 

Using equations (9.42) and (9.35), the expected warranty cost of the product can be found 

as 

       (9.43) 

where erf  is called the error function. The error function is defined as 
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9.2.1.3 Policy-3: Combined Free Replacement Warranty/Pro-Rated Warranty 
(FRW/PRW) policy 

 

Under this policy, the manufacturer agrees to provide a free replacement of the 

original product up to time  from the time of initial purchase and any failure in the 

interval from  results in a pro-rate refund. The warranty does not renew. 

From the manufacturer’s view point, the rebate function as per the policy is represented 

as 

     (9.44) 

where is the purchase or buyer’s price of the product. The expected rebate over the 

warranty period [0,W) is given by 

                

                                     (9.45) 

Substituting equation (9.44) in equation (9.45), we obtain 

                  (9.46) 

which can be simplified as 

      (9.47) 

The expected warranty cost to the manufacturer/seller is given by  

         (9.48) 

Equations (9.47) and (9.48) yield: 

    (9.49) 
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For the failure distributions represented by equations (9.38) and (9.41), the expected 

warranty costs for this policy can be obtained by substituting, respectively, equations 

(9.39) and (9.42) in equation (9.49). 

 

9.2.2 Two-dimensional warranty policy [One-dimensional approach] 

In the two-dimensional warranty policies [48, 50, 136, 137], a simple non 

renewing policy, namely the Free Replacement Warranty (FRW), is considered. The 

procedure to find the corresponding expected warranty cost from the manufacturer’s view 

point can be computed as indicated below. 

 

Policy-4: Free Replacement Policy (FRP) 

 Under this policy the manufacturer agrees to repair or provide a replacement for the 

failed product free of charge up to a time W or up to a usage U, whichever occurs first, 

from the time of initial purchase. The warranty region is a rectangle [0, W) × [0, U) as 

shown in Figure 9.1. U and W are the parameters of the policy. This policy does not 

renew. Let and  represent the age and usage of the product at time t, 

respectively. Let Y(t) represent the total usage over the interval [0,t), with the  first sale at 

t = 0. If no product failure has occurred in [0, t), then  

            (9.50) 

This is also true if all the failed items are repaired with their repair times equal to zero. In 

contrast, if the product is not repairable and if there have been one or more failures in [0, 

t) then    and          (9.51) 
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In the one-dimensional approach, we model  as a function of . This function 

characterizes the product usage as a function of the age of the product. This relationship 

is assumed to be linear with a non negative coefficient R as: 

             (9.52) 

where R represents the usage per unit time or usage rate, and may vary from user to user. 

We can model it as a random variable with density function g(r) so that  

             (9.53) 

Three different forms of G(r) reflecting different usage rates across the population of 

buyers are given below: 

ii) R uniformly distributed over [a, b], with :  

                  (9.54)  

iv) R = a + A[b-a], with  , and A is a random variable with a Beta density 

function: 

      (9.55) 

where B(p, q) is the Beta function,  p and q are two parameters (positive real 

numbers). We assume that all the values of R are in the interval [a, b].  

v) R distributed according to the Gamma distribution : 

            (9.56)   

 

We assume that R is uniformly distributed as defined by equation (9.54) in this policy. 



www.manaraa.com

270 
 

 
 

When the usage rate R = r warranty stops at time   or W, if 

(iii)                  (9.57) 

(iv)   where                       (9.58) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 Warranty region for policy 4 

 

Repairable products [89] 

    When a product fails, it is repaired using minimal repair. As a result, when R = r, we 

have  

          (9.59) 

For repairable products,     is assumed to be a non stationary Poisson process with 

intensity function. We assume a simple linear model for the intensity function, , as 

          (9.60) 

* 
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where  for .                    

     Let N(W,U) denote the number of failures under warranty and N(W, U/r) the number 

of failures under warranty when R = r. Then, [28], 

         (9.61) 

Minimal repair, i.e., no change to failure rate after item is repaired is considered. As a 

result, we have 

       (9.62) 

Since      is a non stationary Poisson process with intensity     (given by 

equation (9.60)), the expected value of N(W, U/r) is given by 

      (9.63) 

Using the conditional expectation argument, the expected number of failures over the 

warranty region is given by 

          (9.64) 

Using equation (9.63), equation (9.64) can be simplified as 

      (9.65) 

where, dG(r) = g(r)dr.  We assume R to be uniformly distributed over [a, b] as given by 

equation (9.54) and thus changing the limits of integration in equation (9.65) to a to b and 

substituting    from equation (9.60), we obtain  
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                             (9.66) 

Substituting g(r) = 1/(b-a) and  =  U/r   in equation (9.66), we obtain 

     (9.67) 

The expected total warranty cost per unit sale is given by  

          (9.68) 

where    is the cost of minimal repair. 

The marginal density functions of W and U, denoted by f1(W) and f2(U), are exponential 

with means  and , respectively, and their corresponding 1-D renewal functions  

are M1(W) and M2

 and        (9.69) 

(U), respectively and are given by  

Using Laplace transformation and scale change property of 2-D Laplace transform, Kim 

and Rao [106] derived the relation between M0

      (9.70) 

 and  as 

Analogous to the univariate theory, the 2-D renewal function,  

is given by        (9.71) 

where the superscript n represents n-fold convolution and the subscript   denotes the 

correlation coefficient between the random variables W and U. 

When  =0, Downton (1970) [62] derives the relation for , which is given by 

       (9.72) 

Using Equations (9.71) and (9.72) as derived by Kim and Rao [106], we get 
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      (9.73) 

where   is the incomplete gamma function and is defined as follows  

        (9.74) 

where  is called gamma function and is defined as 

         (9.75) 

Thus, we obtain from the equations (9.70) and (9.73) 

      (9.76) 

For the optimization problems considered in the paper, we assume , n = 15, 

and . Thus, the only unknown will be  in equation (9.76). Minimizing the 

least square error function defined as   

      (9.77) 

to find  and then substitute in joint probability density function for bivariate exponential 

distribution as proposed by Downton (1970) [62] and is given as 

    (9.78) 

 where ,    is the modified Bessel function of the first kind of nth

The failure probability distribution for the bivariate exponential distribution is given by  

 order.  

       (9.79) 
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9.3 COMPARISON OF VARIOUS WARRANTY POLICIES 

For each warranty policy, the optimization problem, with continuous design 

variables, is formulated to minimize the total warranty cost with a constraint on the total 

failure probability of the system. All the sub-systems in each optimization problem are 

assumed to have the same warranty policy. The warranty period is assumed to be 36 

months for the one-dimensional warranty policies and the warranty period is  considered 

to be either 36 months or a distance travelled by the automobile (mileage) is 36000 miles 

whichever comes first for the two-dimensional warranty policy. The cost models and the 

data are based on the idea that as the failure rate or design variable increases, the 

manufacturing cost of the sub-assembly decreases. The various costs in Tables 9.2 and 

9.4 are stated in dollars. 

The optimization problem is given by: 

Find { }TxxxX 521 


=  to minimize 

∑
=

=
5

1
)()(

j
jxWCXTWC


                (9.80) 

subject to  

max)( TFPSXTFPS ≤


           (9.81) 

where TWC represents the total warranty cost of the system, WC the warranty cost of the 

sub-assembly, TFPS the total failure probability of the system, and maxTFPS  the 

maximum permissible failure probability of the system. The automobile can be 

considered to be a series system and hence the total failure probability of the system can 

be calculated as indicated in section 3.6.1. The design data (permissible discrete design 

variable, and ) is used to fit a quadratic curve for each variable for each sub-system 
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which in turn is used to interpolate other two values ( and ) for any particular value 

of the design variable. The modified PSO algorithm is implemented in a matlab program 

to include dynamic velocity function for the maximum velocity, bounce method for the 

position (or variable value) which exceeds the specified variable limits and dynamic 

penalty function approach for constraint violation. The PSO parameters are assumed as: 

population size, p = 24, maximum number of iterations, imax

1c

= 2000, cognitive learning 

rate, = 2, social learning rate, 22 =c , maximum inertia weight, iwmax= 0.9, minimum 

inertia weight, iwmin 0001.0min =iV


= 0.3, minimum velocity vector,  and maximum 

velocity vector, 02.0max =iV


for all i (for the automobile warranty problem, i = 1 to 5), 

stopping convergence criterion (in terms of the change in the objective function value) = 

10-8 

 

for over 250 continuous iterations. 

9.3.1 Non-repairable products 

Three optimization problems, with five continuous design variables, to minimize 

the total warranty cost associated with five non-repairable sub-systems of the automobile 

are considered. The design variables and their ranges are indicated in Table 9.1. The 

warranty-related design data associated with the various sub-systems are indicated in 

Table 9.2 where  denotes the manufacturer’s cost and  the buyer’s cost. The 

warranty policy used in the optimization problems and the corresponding optimum 

solutions are obtained when maxTFPS = 0.4 are indicated in Table 9.5. The lowest value of 

the optimum solutions of the optimization problems is obtained for FRW with Weibull 

failure distribution,  .  
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Table 9.1 Warranty-related design data for non-repairable sub-systems of an 
automobile 

Design variable, 

 (in month-1

 

) 

Sub-assembly associated 

 

Range of the 

design variable,  

in month-1) 

  Brakes (control systems) [0.001,0.01] 

   Exhaust system [0.002,0.016] 

   Hvac system [0.003,0.009] 

   Electrical battery [0.004,0.012] 

   Safety system [0.004,0.01] 

 

 

Table 9.2 Design data assumed for each design variable for non-repairable products 

Sub-assembly Variables Different permissible discrete values 
Brakes 
(control 
systems) 

 0.004 0.006 0.008 0.01 

 

110 90 80 70 

 

120 100 88 75 

Exhaust 
system 

 0.002 0.007 0.011 0.016 

 

125 95 85 65 

 

145 112 89 66 

Hvac system 
 0.004 0.006 0.009  

 

200 180 150  
 

300 260 220  
Electrical 

battery 

 0.004 0.008 0.011 0.012 

 

135 110 80 75 
 

160 140 120 105 

  0.004 0.006 0.008 0.01 
Safety system 

 

112 94 82 72 

  

120 100 86 75 
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9.3.2 Repairable products 

The three optimization problems with five continuous design variables to 

minimize the total warranty cost associated with five repairable sub-systems of the 

automobile are considered in the formulation. The design variables and their ranges are 

indicated in Table 9.3. The warranty-related design data associated with the various sub-

systems are indicated in Table 9.4 where  denotes the manufacturer’s cost and  the 

repair cost. The warranty policy used in the optimization problems and the corresponding 

optimum solutions are obtained when maxTFPS = 0.1 are indicated in Table 9.5. The 

lowest value of the optimum solutions of the optimization problems is obtained for the 2-

dimensional FRW (exponential distribution).   

Table 9.3 Warranty-related design data for repairable sub-systems of an automobile 

 

Design variable,  

in month-1

Sub-assembly 

associated 

) 

Range of the design 

variable,  

in month-1) 

  Engine [0.00001,0.004] 

   Transmission system [0.00005,0.0045] 

   Suspension system [0.00005,0.0046] 

   Chassis system [0.00002,0.0046] 

   Fuel system [0.00002,0.0048] 

*It is has no units when design variable represent  for 2-dimensional FRW 
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Table 9.4 Design data assumed for each design variable for repairable products 

Sub-assembly Variables Different permissible discrete values 

Engine  
 0.00001 0.001 0.0025 0.004  

 

1150 1030 940 850  

 

120 105 90 80  

Transmission 
system 

 0.00005 0.0015 0.003 .0045  

 

340 320 280 250  

 

50 50 45 45  

Suspension 
system 

 0.00005 0.0023 0.0032 .0046 

 

460 420 380 345 

 

80 80 75 65 

Chassis 
system 

 0.00002 0.0013 0.0025 0.0046 

 

470 430 380 330 

 

130 110 90 70 

Fuel system 
 0.00002 0.0014 0.0032 0.0048  

 

370 325 265  235 
 

125 105 85  70 
 

 
Table 9.5 Results of optimization problems of various warranty policies 

 
Policy 

No. 

Policy Description Optimum Total 

Warranty Cost ($) 

Non-repairable and non-renewing 

1 FRW (Weibull distribution, ) 613.24 

2 PRW (Weibull distribution, ) 671.31 

3 Combined FRW/PRW (Weibull distribution,  

) 

717.65 

Repairable and non-renewing 

1 FRW (Minimum repair, exponential distribution) 3530.08 

2 2-Dimensional FRW (exponential distribution) 2820.55 

3 FRW (Minimum repair, Weibull distribution,  

) 

2824.33 
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Thus, we conclude that the FRW and 2-dimensional FRW are the most economical 

warranty policies for non-repairable and repairable items, respectively.  

 

9.4 FORMILATION OF AN AUTOMOBILE WARRANTY OPTIMIZATION 
PROBLEM 
 

An optimization problem with discrete design variables is formulated to minimize 

the total warranty cost with a constraint on the total failure probability of the system. A 

typical example of an automobile [8,116,121,131,132,147,151,196] is considered to 

illustrate the approach. In general, an automobile consists of more than 2500 parts in the 

various sub-assemblies of the system. In order to make the system realistic, versatile and 

reasonably complex, the warranty cost associated with 12 important sub-systems of the 

automobile is considered in the formulation. The warranty-related design variables 

associated with the various sub-systems are indicated in Table 9.6. The warranty period is 

assumed to be 36 months for the one-dimensional warranty policies and the warranty 

period is considered to be either 36 months or the distance travelled by the automobile 

(mileage) to be 36000 miles whichever comes first for the two-dimensional warranty 

policy.  
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Table 9.6 Warranty-related design variables of an automobile 

 

Design 

variable 

Sub-assembly 

associated Variable 

notation* 

No. of discrete 

values considered 

within the range 

Range of the design 

variable 

  Brake   16 [0.001,0.01] 

   Engine   7 [0.0002,0.003] 

   Transmission   9 [0.00015,0.0038] 

   Exhaust   9 [0.002,0.016] 

   Suspension   9 [0.0012,0.0026] 

   HVAC system   9 [0.002,0.009] 

   CAB system   6 [0.0015,0.011] 

   Chassis system   9 [0.0002,0.003] 

   Electric Battery   12 [0.002,0.012] 

   Fuel system   7 [0.003,0.012] 

   Safety stem   12 [0.002,0.01] 

   Other components  16 [0.0011,0.0045] 

*Unit for  is month-1

 

and  is a dimensionless quantity 

Different vendors or suppliers are assumed for each of the sub-assemblies (or its 

components) as shown in Table 9.7. In Table 9.7,  denotes the manufacturer’s cost,  

the buyer’s cost,  the repair cost,  the coefficient used in equation (9.60) and  the 

failure time distribution parameter. The units of the costs ( ) are stated in 

dollars. The cost models and the data are based on the idea that as the failure rate or 

design variable increases, the manufacturing cost of the sub-assembly decreases for each 

vendor. Without loss of generality, the vendors are denoted as first, second, third and so 

on. The use of multiple vendors for any sub-assembly or component corresponds to a real 
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world scenario in the context of an automobile manufacturer. Warranty period, W, is 

stated in terms of months and the usage, U, is stated in terms of thousands of miles. The 

various warranty policies discussed in section 3.6.2 are considered for each of the sub-

assemblies and the corresponding model parameters are given in Table 9.8. 
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Table 9.7 Design data assumed for each design variable 

Sub-assembly Vendor Variables Different permissible discrete values 

brakes 
(control 
systems) 

First  

0.004 0.006 0.008 0.01 

 

110 90 80 75 

Second  

0.003 0.005 0.007 0.009 

 

110 100 90 80 

Third  

0.002 0.0035 0.0065 0.0085 

 

105 100 95 85 

Fourth  

0.001 0.0045 0.0075 0.0095 

 

115 105 90 80 

engine (engine 
components) 

First 
 

0.001 0.0025 0.003   

 

1000 950 900   

 

100 95 90   

Second 
 

0.0002 0.0011 0.002 0.0028 

 

1100 1000 970 940 

 

100 95 90 90 

transmission 

First 
 

0.001 0.0025 0.0036   

 

300 280 250   

 

50 45 45   

Second 
 

0.00015 0.002 0.0034   

 

310 290 270   

 

50 45 45   

Third 
 

0.0005 0.0026 0.0038   

 

305 280 250   

 

50 45 45   

exhaust 
system 

First 
 

0.002 0.0085 0.016   

 

100 80 70   

 

110 85 80   

Second 
 

0.004 0.008 0.012   

 

100 90 80   

 

110 95 85   

Third 
 

0.006 0.01 0.015   

 

105 95 85   

 

115 100 95   
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Table 9.7 Design data assumed for each design variable (continued) 

Sub-assembly Vendor Variables Different permissible discrete 
values 

suspension 

First 
 

0.0013 0.002 0.0026 

 

400 380 350 

 

80 80 75 

Second 
 

0.0012 0.0017 0.0022 

 

410 390 370 

 

80 80 75 

Third 
 

0.0014 0.0018 0.0025 

 

405 380 350 

 

80 80 75 

hvac system 

First 
 

0.0035 0.006 0.008 

 

200 180 170 

 

300 280 270 

Second 
 

0.002 0.007 0.009 

 

210 190 160 

 

300 280 260 

Third 
 

0.004 0.0065 0.0085 

 

195 180 160 

 

300 280 260 

CAB system 

First 
 

0.004 0.008 0.01 

 

600 550 530 

 

640 600 590 

Second 
 

0.0015 0.007 0.011 

 

610 560 530 

 

640 600 580 

chassis system 

First 
 

0.001 0.002 0.003 

 

400 380 350 

 

100 100 90 

Second 
 

0.0002 0.0018 0.0025 

 

410 390 370 

 

100 100 90 

Third 
 

0.0006 0.0022 0.0029 

 

405 380 350 

 

100 100 90 
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Table 9.7 Design data assumed for each design variable  

Sub-assembly Vendor Variables Different permissible discrete values 

electrical 
battery 

First 
 

0.003 0.007 0.011 0.012 

 

110 90 80 75 

 

150 140 130 125 

Second 
 

0.002 0.006 0.009 0.0115 

 

110 100 90 80 

 

150 140 130 125 

Third 
 

0.005 0.0092 0.01 0.0105 

 

105 100 95 85 

 

150 140 130 125 

fuel system 

First 

 

0.004 0.008 0.01   

 

300 275 260   

 

100 95 90   

 

0.007 0.01 0.012   

Second 

 

0.003 0.006 0.009 0.012 

 

320 290 270 260 

 

100 95 90 90 

 

0.006 0.009 0.012 0.015 

safety system 

First  

0.002 0.0065 0.008 0.01 

 

110 90 80 75 

Second  

0.003 0.005 0.007 0.009 

 

110 100 90 80 

Third  

0.0035 0.004 0.006 0.0085 

 

105 100 95 85 

other 
components 

First  

0.0014 0.0016 0.002 0.0023 

 

110 90 85 80 

Second  

0.0013 0.0024 0.0037 0.0045 

 

110 100 90 80 

Third  

0.0012 0.0025 0.003 0.0035 

 

105 100 95 85 

Fourth  

0.0011 0.0015 0.0034 0.0042 

 

115 105 90 80 
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Table 9.8 Warranty policies assumed for the design variables 

Sub-
assembly Design 

variable 

Type of Sub-
assembly and 
warranty 

Model description and the 
parameters assumed  

Brake      
                      
Safety 

 

 
Non-renewing,  1-D, 
Non repairable FRW 

Weibull model  W = 36 months                                                
for brakes  β = 2                                                                           
for safety  β = 1.75 

Engine  

 

Transmission 

  

Chassis 

 

     

 

 

 

 

 
 

Non-renewing, 
repairable, 2-D 

Weibull model , U = 36000 miles, 
W = 36 months  G(r) is uniformly 
distributed over [0,3] using 1-D 
approach,   is assumed to be 
linear,                    
for engine  = 0.0001 ,              
for transmission =0.0002,       
for chassis = 0.00015. 

Exhaust      
                      
CAB 

 
 

 
 

 
  

Non-renewing , 1-D, 
Non repairable PRW              

 

Weibull model    β = 2 ,                 
W = 36 months         

Suspension  

 

Non-renewing,  1-D, 
repairable FRW 
minimal repair 

Weibull model    β = 1.5 ,              
W = 36 months         

HVAC                       
Electrical 
battery 

 

 

 

Non-renewing,  1-D 
combined 

FRW/PRW 

 

Weibull model  β = 2,                     
for HVAC                                 
W1=24 months, W2= 36 months                                     
for electrical battery             
W1=12 months, W2=36 months 

Fuel system  

 

Non-renewing, 1-D,  
repairable FRW 

repair is not perfect  

Exponential distribution,                            
- before,  - after,                   

W = 36 months 

Other 
systems 

 
 

 
 

 

Non-renewing,  1 D, 
Non repairable FRW 

Gamma distribution, β = 2 ,         
W = 36 months         
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9.4.1 Problem statement for automobile warranty problem 

 The automobile warranty problem can be stated in mathematical form as follows: 

Find 
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                    (9.82) 

to minimize  

)(2)()(2)( 5

12

5,2
1 xWCxWCxWCXTWC

jj
j ++= ∑

≠=


        (9.83) 

subject to  

max)( TFPSXTFPS ≤


           (9.84) 

where TWC represents the total warranty cost of the system, WC the warranty cost of the 

sub-assembly, TFPS the total failure probability of the system, and maxTFPS  the 

maximum permissible failure probability of the system. The automobile can be 

considered to be a series system and hence the total failure probability of the system can 

be calculated as indicated in section 3.6.1. The warranty cost of the brakes and 

suspension are multiplied by a factor 2 to account for both the left and right side sub-

assemblies of the automobile. The total failure probability of the serious system, using 

equation (3.45), can be expressed as 

))(1(1)(
12

1
∏

=

−−=
j

jxFPXTFPS


                      (9.85) 

where )( jxFP represents the failure probability of jth

Several automobile warranty optimization problems with varying 

 sub-assembly. 

maxTFPS are solved for 

two cases.  In each case, we assume two types of design variables for the optimization 
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problems namely- continuous design variables and discrete design variables. The two 

cases are designated as: 

Case a: By assuming the failure distribution models of all the sub-assemblies to be 

exponential. 

Case b: By assuming the failure distribution models of all the sub-assemblies as indicated 

in Table 8 (Weibull distributions). 

 

9.4.2 Numerical results and discussion 

The continuous and discrete warranty optimization problems are solved using a 

modified particle swarm optimization (PSO) technique. The modified PSO algorithm is 

implemented in a matlab program to include dynamic velocity function for the maximum 

velocity, bounce method for the position (or variable value) which exceeds the specified 

variable limits and dynamic penalty function approach for constraint violation. The 

design data for each sub-system, shown in Table 9.7, is used to fit a quadratic curve 

which in turn is used to interpolate for any particular value of design variable in the case 

of continuous design variable optimization problem (in similar way as done in section 

9.3). The discrete optimization problem is solved using a modified particle swarm 

optimization [61] using Closest Discrete Approach (CDA) to handle the discrete design 

variables. The PSO parameters are assumed as: population size, p = 50, maximum 

number of iterations, imax 1c= 2000, cognitive learning rate, = 2, social learning rate, 

22 =c , maximum inertia weight, iwmax= 0.9, minimum inertia weight, iwmin

0001.0min =iV


= 0.3, 

minimum velocity vector,  and maximum velocity vector, 02.0max =iV


for 

all i (for the automobile warranty problem, i = 1 to 12), stopping convergence criterion (in 
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terms of the change in the objective function value) = 1e-8 for over 400 continuous 

iterations. The optimum solutions are obtained through several matlab program runs with 

varying values of the maximum permissible failure probability of the system for case (a) 

for both continuous and discrete design variables and the results obtained are shown in 

Figure 9.2. 

Table 9.9 Comparison of optimal solutions of warranty problems for case a 

Quantity 
Continuous 

solution for case a 

Discrete solution 

for case a 

  0.00103 0.008 

   0.000708 0.0002 

   0.00015 0.00015 

   0.00216 0.002 

   0.0026 0.0025 

   0.002 0.002 

   0.001502 0.0015 

   0.0002 0.0002 

   0.00203 0.002 

   0.00927 0.009 

   0.00677 0.008 

   0.00335 0.0023 

TWC 

TFPS 

4376.391 

0.79945 

4378.640 

0.797179 
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Table 9.10 Comparison of optimal solutions of warranty problems for case b 

Quantity 
Continuous 

solution for case b 

Discrete solution 

for case b 

  0.003097 0.002 

   0.0002066 0.0002 

   0.0001504 0.00015 

   0.002935 0.002 

   0.002599 0.0025 

   0.00200 0.004 

   0.004114 0.007 

   0.000202 0.0002 

   0.002055 0.002 

   0.003562 0.003 

   0.003740 0.002 

   0.004322 0.0023 

TWC 

TFPS 

4307.2151 

0.39973 

4338.763 

0.39388 

 

The optimum solutions for both continuous and discrete  automobile warranty 

optimization problems with the failure  distributions assumed as per case a for various 

sub-assemblies are tabulated in Table 9.9 and those with failure distributions assumed as 

per case b for various sub-assemblies are tabulated in Table 9.10. 
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Figure 9.2 Minimum total warranty cost vs maxTFPS with continuous and discrete 

design variables (Exponential failure distribution) 

 

The optimum solutions are obtained through several matlab program runs with varying 

values of maximum permissible failure probability of the system for case (b) for both 

continuous and discrete design variables and the results obtained are shown in Figure 9.3.  
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Figure 9.3 Total warranty cost vs maxTFPS with continuous and discrete design 

variables (Weibull failure distribution) 

As the total failure probability of the system decreases, the total warranty cost increases 

as expected. In case of discrete design variables for both cases (a) and (b), we observe 

that the curve is not smooth and has some bumps. It is due to the fact that different 

vendors have their own pricing criteria to determine the costs with respect to the failure 

probability of the product, profit margin.  In figures 9.4a to 9.4l, first one plot is drawn 

between the failure probability calculated at the end of the warranty period vs design 

variable and the second plot is drawn between failure probability with different values of 

the warranty period (in case of 2-D warranty policies, we assume W=U) at mean value of 

the design variable for each of the sub-assemblies in the discrete optimization problem. 
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The dash line curves represent the exponential failure distribution model as represented 

by case (a) and the solid line curves represent the Weibull failure distribution model as 

represented by case (b) in Figures 9.4a to 9.4l. All the plots of Figures 9.4a to 9.4l show 

an increasing trend with respect to the x-axis. In the case of 2-D warranty policies (as in 

the case of engine, transmission and chassis), the exponential failure distribution is 

assumed for both cases (a) and (b). For the fuel system sub-assembly, the curves coincide 

because both the cases assume the same exponential failure time distribution. These plots 

(Figures 9.4a to 9.4l) are obtained using a separate matlab programs by using all the 

information given in Tables 9.6 to 9.8 to compare both the failure distribution models (in 

both cases a and b) for the failure probability for each of the design variables and in order 

to have comparable spread for the total failure probability of the system for both cases. 

Thus, it can be seen that design or formulation of the data for the automobile problem 

taken care of the total failure probability of the system spread in the design space for both 

cases. 



www.manaraa.com

293 
 

 
 

 

Figure 9.4a   and  
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Figure 9.4b   and  
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Figure 9.4c   and  
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Figure 9.4d   and  
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Figure 9.4e   and  
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Figure 9.4f   and  
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Figure 9.4g   and  
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Figure 9.4i   and  
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Figure 9.4j   and  
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Figure 9.4k   and  
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9.5 SENSITIVITY ANALYSIS 

 

Sensitivity analysis of the total failure probability of the system TFPS (constraint) 

and the warranty cost TWC (objective function) has been conducted with respect to the 

design variables and the results are shown in Figures 9.5(a)-9.5(c) and 9.6(a)-9.6(c), 

respectively. Figures 9.5(a) -9.5(c) and 9.6(a) -9.6(c) indicate the variations of TFPS and 

TWC when the optimum values of the discrete design variables are changed over the 

range ±20% (approximately). Depending on the location of the optimum discrete design 

variable with its permissible range, up to 2 values smaller and up to 2 values larger than 

the optimum value are considered for the sensitivity study. This sensitivity analysis has 

been carried with reference to the discrete optimum solution of case b when maxTFPS = 

0.4. For the design variables associated with the sub-assemblies of the engine, 

transmission, hvac and chassis systems, the results of the sensitivity analysis are shown in 

Figures 9.5(a) and 9.6(a). For the design variables associated with the sub-assemblies of 

exhaust system, cab system, electrical battery and safety system, the results of the 

sensitivity analysis are shown in Figures 9.5(b) and 9.6(b). For the rest of the design 

variables, namely brakes, suspension, fuel systems and other components, the sensitivity 

analysis results are shown in Figures 9.5(c) and9.6(c). The constraint, maxTFPS = 0.4, is 

shown as dotted line in Figures 9.5(a) to 9.5(c) and the optimum warranty cost, TWC = 

$4338.8, is shown as dotted line in Figures 9.6(a) to 9.6(c).  The sensitivity analysis with 

respected TFPS indicates that as the discrete design variable increases, TFPS increases as 

expected.  
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Figure 9.5a  

 

Figure 9.5b  
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Figure 9.5c  

 

Figure 9.6a  
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Figure 9.6b  

 

Figure 9.6c  
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9.6 DISCUSSION 

We have studied three warranty policies for both repairable and non-repairable products 

for an automobile example to illustrate us the best warranty policy among them which 

yield minimum total warranty cost. Thus, we concluded that the FRW and 2-dimensional 

FRW are the most economical warranty policies for non-repairable and repairable items, 

respectively. In this study, an automobile warranty problem has been formulated by 

making it as close to reality as possible. The problem formulated results in both discrete 

and continuous design spaces, with the number of potential design points on the order of 

1011

The sensitivity analysis results show that the engine, transmission and chassis 

system sub-assemblies are more sensitive to the TFPS. Engine and suspension sub-

 in the discrete design space. The discrete optimization problem is closer than the 

continuous optimization problem to the reality. The modified PSO algorithm is used to 

find the optimum solutions for different values of the maximum permissible total failure 

probability of the system for both the exponential and Weibull failure distribution models 

(cases a and b) with results shown in Figures 9.3 and 9.4. Both continuous and discrete 

design variable optimization problems as the total failure probability of the system 

decreases, the total warranty cost also decreases for both cases a and b. When you fit a 

quadratic curves for the discrete design variable and its corresponding sub-assembly costs 

from different vendors for each assembly, and with fact that vendors have their own 

pricing criteria, we can see some points above and below the quadratic curve and thus 

make some discrete design variables take less warranty cost than their corresponding 

continuous design variables obtained from quadratic curve. This is the reason for the 

crossing of the curves in figures 9.3 and 9.4. 
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assemblies are more sensitive to the TWC of the system. Sensitivity curve with respect to 

TWC for hvac sub-assembly increases and then decreases as the design variable 

increases; this is due to the fact that vendor have their own pricing criteria. The 

sensitivity analysis with respected TWC indicates that as the discrete design variable 

increases, TWC increases except for engine, brake and other system sub-assemblies for 

the automobile. This exception is due to the fact that vendors pricing criteria don’t match 

among different vendors.  

 

9.7 SUMMARY 

In this chapter a comprehensive study of the various non-renewing one-dimensional 

and two dimensional warranty policies has been made from an automobile 

manufacturer’s view point. The total warranty costs as well as the probability of failure of 

the system corresponding to different parameters assumed for the failure time 

distributions of the sub-assemblies are calculated. Two types of failure time distributions-

the exponential and Weibull types-are used for the sub-assembly lives. The automobile 

warranty optimization problem has been formulated with both discrete and continuous 

design variables based on the various warranty policies discussed. The results obtained 

(using the modified PSO) will give the manufacturer an insight on the probable warranty 

cost based on the reliability desired for the automobile.  
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CHAPTER 10 

CONCLUSIONS 

 
This work studies various combination rules to combine evidences from multiple 

sources to understand the procedure of combining evidences in depth and how the 

conflict among the evidences can be treated. The solutions of different optimization 

problems, which are framed and solved for combining two sources of evidences, indicate 

the similarities and distinctions among various combination rules as discussed in section 

4.2. The proposed selection procedure described in section 4.3 guides the user or analyst 

to select the most suitable combination rule for combining various evidences obtained 

from multiple sources based on the nature of evidence sets. At the same time, the user or 

analyst is free to use other rules for combining the evidences. Evidence sets given in 

Table 4.7 are constructed in such a way that the applied combination rule gives more 

satisfactory/logical results compared to other combination rules in each of the five cases 

described in section 4.4. For each of the cases described in section 4.4, if any 

combination rule other than the one suggested is used for combining the evidences we 

may get misleading results which may not convergence to actual reality when more and 

more evidence/information becomes available. We also considered an example, in which 

data is available in various forms of evidence namely deterministic, probabilistic, fuzzy 

and Dempster’s bpa to combine evidence. 

  When evidences on several uncertain parameters are available from a number of 

sources (experts) in an engineering problem, and if the response of the system involves 

mathematical expressions, DST or Zhang’s combination rule can be used. In the case of 
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the safety analysis of the welded beam problem, evidences of two and four uncertain 

parameters are combined in sections 5.4.1 and 5.4.2, to find the maximum shear stress 

induced in the weld. A modified DST method is presented in section 5.5 to combine 

evidences from multiple sources, when the sources of evidence have different 

credibilities. The variations in the belief and plausibility have been observed to depend on 

the number of interval ranges for the interval-valued data for combining the evidences. 

An essential feature of knowledge representation in engineering applications is the ability 

to represent and manage imprecise concepts and the example presented in chapter 5 

represents an initial step in this direction. 

The sum of the lower bound on margin of safety and the upper bound on margin of 

failure is always equal to 1 in all cases as, indicated in section 6.4. As the number of 

alpha cuts used in the numerical computation of the bounds on the margins of safety and 

failure changed, the values of the computed bounds are found to vary. However, with 

increasing number of the alpha cuts, the bounds are found to converge to the values 

reported in this work. Irrespective of the number of sources of evidence, when the 

assumed fuzzy membership function of the allowable shear stress changes from the 

triangular to the trapezoidal shape, the lower and upper bounds tend to shrink the ranges 

of the margins of safety and failure. The widening or shrinking of the ranges of the 

margins of safety and failure is observed to depend on the available evidence and the 

influence of the uncertain parameters on the output or response parameter of the system. 

In general, the procedure proposed for considering the credibilities of the various sources 

of evidence (WFTI) is applicable for combining evidences to evaluate the safety/failure 

of any uncertain system in the presence of evidences on the uncertain parameters from 
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different sources. The methodology presented in chapter 6 provides an alternative 

framework for combining evidence from multiple sources using fuzzy theory. 

The chapter 7 presents algorithms based on modified PSO to solve all types of 

engineering optimization problems involving single objective or multiple objectives with 

continuous, discrete and/or mixed design variables in the presence of constraints. 

Because of the convergence difficulties experienced with the original PSO algorithm with 

a constant value of the maximum velocity limit, the dynamic velocity function approach 

has been used to speed up the convergence. The bounce method provides a significant 

improvement in the performance of the algorithm to overcome stagnation of the 

population. Results of single objective optimization problems like welded beam design 

and pressure vessel design showed that the algorithm converges to the optimal solution 

faster than the original PSO algorithm. When the new MGT, combined with the modified 

PSO, is used to solve multi-objective optimization problems, the best compromise 

(optimal) solution from the Pareto-optimal front has been found efficiently. The results of 

the 25-bar truss multi-objective optimization problem illustrate the effectiveness and 

efficiency of the new approach when all the objective functions are not totally 

conflicting. The results obtained for the 25-bar truss with all design variables taken as 

continuous or as mixed discrete are found to be comparable to another. A novel attempt is 

made to formulate and design a composite simply supported beam optimization problem 

with uncertain parameters. 

The chapter 8 presents algorithms based on modified PSO coupled with vertex method to 

solve uncertain engineering optimization problems involving multiple objectives with 

continuous, discrete and/or mixed design variables with constraints. When convergence 
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difficulties are experienced with the original PSO algorithm by using a constant value of 

the maximum velocity limit, the dynamic velocity function approach is found to speed up 

the convergence. The bounce method provides a significant improvement in the 

performance of the algorithms to overcome stagnation of the population. When the MGT, 

combined with the modified PSO and vertex method, is used to solve uncertain multi-

objective optimization problems, the best compromise (optimal) solution from the Pareto-

optimal front has been found efficiently. The results of the 25-bar truss multi-objective 

optimization problem illustrate the effectiveness and efficiency of the new approach 

when all the objective functions are not totally conflicting. The results obtained for the 

25-bar truss with all design variables taken as continuous or as mixed discrete are found 

to be comparable to another. These results are indicative of the power to solve the 

uncertain engineering problems using the proposed method. 

The present research focuses on minimization of warranty cost for servicing warranties in 

1-dimension and 2-dimensions both for repairable and non-repairable products. A 

comprehensive study of the various non-renewing one-dimensional and two dimensional 

warranty policies has been conducted from an automobile manufacturer’s view point in 

chapter 9. The total warranty cost and the probability of failure of the system 

corresponding to different parameters assumed for the failure time distributions of the 

sub-assemblies are calculated. Two types of failure time distributions-the exponential and 

Weibull types-are used for the sub-assembly lives. The automobile warranty optimization 

problem has been formulated for both discrete and continuous optimization problems 

based on the various warranty policies discussed. The results obtained using the modified 
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PSO will give manufacturer an insight on the probable total warranty cost based on the 

reliability desired for the automobile.  

We have summarized the present research work in this chapter and the future scope of the 

research is described in the next chapter. 
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CHAPTER 11 

FUTURE SCOPE OF WORK 

 
Using a procedure similar to the one described in chapter 4, other rules of combining 

evidences can be explored and suitable selection procedures can be developed to apply 

these rules. A Weighted Dempster Shafer Theory for Interval-valued data (WDSTI) and 

Weighted Fuzzy Theory for Interval-valued Data (WFTI) are proposed to combine 

evidences from multiple sources, to evaluate the safety/failure of any uncertain system in 

the presence of evidence on the uncertain parameters, when the multiple sources of 

evidence have different credibilities. These approached can be explored for other 

engineering applications. The scope of the automobile example considered in chapter 9 

can be expanded to include more sub-assemblies (or design variables) of the automobile 

to obtain more realistic optimum total warranty costs. This work can be extended to 

include the actual data available to the real world auto manufacturers instead of the data 

assumed in Tables 9.6 to 9.8.  The proposed method using modified particle swarm 

optimization (PSO) based algorithm to solve multi-objective optimization of uncertain 

engineering problems involving different types of design variables (continuous, discrete 

and/or mixed). We can apply this algorithm to solve many optimization problems in the 

area of composite structures, aerospace structures and civil engineering. We can also 

explore design of composite structures by expanding the problem solved in chapter-8 for 

multi-objective optimization using uncertain parameters. We can also solve real world 

automobile optimization examples with inherent uncertainty present in the formulation of 

the problem. We can expand the example problem in chapter 4 to combine various forms 
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of evidences available from different sources with different credibilities for complex 

engineering applications. 
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Appendix-A 

A description of the steps involved in the application of the various combination rules 

considered in this study is given below for two examples: The robbery example, with 

evidences as indicated in Table 4.2, and the automobile example, with evidences as 

shown in Table 4.4. 

Robbery Example: 

(i) Dempster’s rule 

Step 1: Using Dempster’s rule, calculate the combined bpa values as shown in Table A.1. 

Table A.1 Combination of bpa values for sources E1 and E

          E

2 

      E

1      

5.0}{ =Am

2   

 1.0}{ =Bm  1.0}{ =Cm  3.0}{ =Θm  

6.0}{ =Am  0.30 0.06 0.06 0.18 

1.0}{ =Bm  0.05 0.01 0.01 0.03 

1.0}{ =Cm  0.05 0.01 0.01 0.03 

2.0}{ =Θm  0.10 0.02 0.02 0.06 

 

Step 2: Determine the value of k, using equation (4.3), as 

24.001.005.001.005.006.006.0 =+++++=k
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Step 3: Using DST combination rule (equation (4.1)), find the values of bpa as: 

7631.0
24.01

1.018.030.0}{ =
−

++
=Am  

0789.0
24.01

02.003.001.0}{ =
−

++
=Bm  

0789.0
24.01

02.003.001.0}{ =
−

++
=Cm  

0789.0
24.01

06.0}{ =
−

=Θm  

Step 4: Compute the belief values as Bel{A} = m{A} = 0.7631, Bel{B} = m{B} = 0.0789 

and Bel{C} = m{C}=0.0789.  

Step 5: Find the plausibility values, using equation (3.10), as Pl{A} = 1 - Bel{B} - Bel{C} 

= 0.8421, Pl{B} = 0.1578 and Pl{C} = 0.1578. 

(ii) Yager’s rule 

Step 1: compute the combined ground probability mass assignments, using equation (4.7) 

to obtain .06.0}{and06.0}{,58.0}{ === CqBqAq  

Step 2: Determine the ground probability mass assignments to the null set and the 

universal set using exactly the same procedure as in the case of Dempster’s rule except 

for the normalization to obtain .06.0}{and24.0}{ =Θ= qq φ   

Step 3: Find the basic probability assignment of the universal set, using equation (4.9), as 

}{ΘYm  .30.0=   
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Step 4: Calculate the belief values Bel{A} = q{A} = 0.58, Bel{B} = q{B} = 0.06 and 

Bel{C} = q{C} = 0.06.  

Step 5: Determine the plausibility values, using equation (3.10), as Pl{A} = 1 - Bel{B} -  

Bel{C} = 0.88, Pl{B} = 0.36 and Pl{C} = 0.36. 

(iii) Inagaki’s extreme rule 

Step 1: Calculate the ground probability mass assignment to the null set, }{φq , and the 

universal set, }{Θq , using exactly the same procedure as in the case of Yager’s rule: 

.06.0}{and24.0}{ =Θ= qq φ  

Step 2: With the value of 3428.1
)()(1

)(1
=

Θ−−
Θ−

=
qq

qp
φ

, equation (4.23) is used to obtain 

,7788.0*58.0}{ == pAmU   pBmU *06.0}{ = 0805.0= and .0805.0*06.0}{ == pCmU   

 Step 3: Determine the belief values as Bel{A} = { }AmU = 0.7788, Bel{B} = 0.0805 and 

Bel{C} = 0.0805.  

Step 4: Find the plausibility values, using equation (3.10), as Pl{A} = 0.8388, Pl{B} = 

0.1405 and Pl{C} = 0.1405. 

(iv) Zhang’s rule 

Step 1: Compute the combined bpa values as in the case of Dempster’s rule (Table A.1). 

Step 2: Indicate the intersection measures (r) for the combined bpa values from sources 

E1 and E2 as shown in Table A.2 (values are assumed to be known from the data of the 

problem). 
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Step 3: Determine the combined bpa values from sources E1 and E2

k~

 using Zhang’s rule 

(Eq. (4.31) without multiplying with the re-normalization constant ) as shown in Table 

A.3. 

 Table A.2 Values of intersection measure (r) for combined bpa values from sources 

E1 and E

          E1      

2 

      E2   
5.0}{ =Am  1.0}{ =Bm  1.0}{ =Cm  3.0}{ =Θm  

6.0}{ =Am  1 0 0 1/3 

1.0}{ =Bm  0 1 0 1/3 

1.0}{ =Cm  0 0 1 1/3 

2.0}{ =Θm  1/3 1/3 1/3 1/3 
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Table A.3 Combined bpa values from sources E1 and E2 using Zhang’s rule before 

re-normalization 

          E1      

    E2                

5.0}{ =Am  1.0}{ =Bm  1.0}{ =Cm  3.0}{ =Θm  

6.0}{ =Am  0.3 0 0 0.06 

1.0}{ =Bm  0 0.01 0 0.01 

1.0}{ =Cm  0 0 0.01 0.01 

2.0}{ =Θm  0.03333 0.006666 0.006666 0.02 

 

Step 4: Re-normalizing the combined bpa values given in Table A.3 as indicated in Table 

A.4 

 

 

 

 

 

 

 



www.manaraa.com

341 
 

 
 

Table A.4 Combined bpa values from sources E1 and E2 using Zhang’s rule after re-

normalization 

          E1      

      E2   

5.0}{ =Am  1.0}{ =Bm  1.0}{ =Cm  3.0}{ =Θm  

6.0}{ =Am  0.642857 0 0 0.128571 

1.0}{ =Bm  0 0.021428 0 0.021428 

1.0}{ =Cm  0 0 0.021428 0.021428 

2.0}{ =Θm  0.071429 0.014285 0.014285 0.042857 

 

Step 5: Find the value of bpa values using Zhang’s rule (equation (4.27) to obtain 

,057143.0}{,842857.0}{ == BmAm  ,057143.0}{ =Cm .042857.0}{and =Θm   

Step 6: Calculate the belief values as Bel{A} = m{A} = 0.842857, Bel{B} = m{B} = 

0.057143 and Bel{C} = m{C}=0.057143.  

Step 7: Determine the plausibility values from equation (3.10) as Pl{A} = 1 - Bel{B} - 

Bel{C} = 0.885714, Pl{B} = 0.1 and Pl{C} = 0.1. 

(v) Murphy’s rule 

Step 1: Calculate the mean bpa set Em from E1 and E2, and the combined bpa values are 

calculated as in the case of Dempster’s rule. 
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Step 2: Find the belief values as Bel{A} = m{A} = 0.7598, Bel{B} = m{B} = 0.0789 and 

Bel{C} = m{C}=0.0789. 

Step 3: Determine the plausibility values using equation (4.2) as Pl{A} = 1 - Bel{B} - 

Bel{C} = 0.8421, Pl{B} = 0.1611 and Pl{C} = 0.1511. 

 

Table A.5 Combination of bpa values for sources E1 and E2 using Murphy’s rule 

          Em      

      Em  

55.0}{ =Am  1.0}{ =Bm  1.0}{ =Cm  25.0}{ =Θm  

55.0}{ =Am  0.3025 0.055 0.055 0.1375 

1.0}{ =Bm  0.055 0.01 0.01 0.025 

1.0}{ =Cm  0.055 0.01 0.01 0.025 

25.0}{ =Θm  0.1375 0.025 0.025 0.0625 

 

Automobile Example: 

(i) Dempster’s rule 

Step 1: Using Dempster’s rule, calculate the combined bpa values as shown in Table A.4. 
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Table A.6 Combination of bpa values for sources E1 and E2 

          E1      

      E2   

5.0}{ =Im  3.0}{ =IIm  2.0}{ =Θm  

6.0}{ =Im  0.30 0.18 0.12 

1.0}{ =IIm  0.05 0.03 0.02 

3.0}{ =Θm  0.15 0.09 0.06 

 

Step 2: Determine the value of k, using equation (4.3), as 

23.005.018.0 =+=k  

Step 3: Using DST combination rule (equation (4.1)), find the values of bpa as: 

74026.0
23.01

15.012.030.0}{ =
−

++
=Im  

1818.0
23.01

09.002.003.0}{ =
−

++
=IIm  

07792.0
23.01

06.0}{ =
−

=Θm  

Step 4: Compute the belief values as Bel{I} = m{I} = 0.74026,and Bel{II} = m{II} = 

0.1818. 
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Step 5: Find the plausibility values, using equation (3.10), as Pl{I} = 1 - Bel{II} = 

0.81818, and Pl{II} = 0.25974. 

 (ii) Yager’s rule 

Step 1: compute the combined ground probability mass assignments, using equation (4.7) 

to obtain  .14.0}{and,57.0}{ == IIqIq  

Step 2: Determine the ground probability mass assignments to the null set and the 

universal set using exactly the same procedure as in the case of Dempster’s rule except 

for the normalization to obtain .06.0}{,23.0}{ =Θ= qq φ   

Step 3: Find the basic probability assignment of the universal set, using equation (4.9), 

we obtain }{ΘYm  .29.0=  

Step 4: Calculate the belief values Bel{I} = q{I} = 0.57 and Bel{II} = q{II} = 0.14. 

Step 5: Determine the plausibility values, using equation (3.10), as Pl{I} = 1 - Bel{II} = 

0.86 and Pl{II} = 0.43. 

(iii) Inagaki’s extreme rule 

Step 1: Calculate the ground probability mass assignment to the null set, }{φq , and the 

universal set, }{Θq , using exactly the same procedure as in the case of Yager’s rule: 

.06.0}{and23.0}{ =Θ= qq φ  

Step 2: With the value of 3239.1
)()(1

)(1 =
Θ−−

Θ−
=

qq
qp

φ
, equation (4.23) is used to obtain 

7546.0*57.0}{ == pImU  and pIImU *06.0}{ = 0805.0= .  
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 Step 3: Determine the belief values as Bel{I} = { }ImU = 0.7546 and Bel{II} = 0.0805.  

Step 4: Find the plausibility values, using equation (3.10), as Pl{I} = 0.81465 and Pl{II} = 

0.24535. 

(iv) Zhang’s rule 

Step 1: Compute the combined bpa values as in the case of Dempster’s rule (Table A.6). 

Step 2: Indicate the intersection measures (r) for the combined bpa values from sources 

E1 and E2 as shown in Table A.7 (values are assumed to be known from the data of the 

problem). 

Step 3: Determine the combined bpa values from sources E1 and E2 using Zhang’s rule 

(Eq. (4.31) without multiplying with re-normalization constant k~ ) as shown in Table A.8. 

 

Table A.7 Values of intersection measure (r) for combined bpa values from sources 

E1 and E2 

          E1      

      E2   

5.0}{ =Im  3.0}{ =IIm  2.0}{ =Θm  

6.0}{ =Im  1 0 0.5 

1.0}{ =IIm  0 1 0.5 

3.0}{ =Θm  0.5 0.5 0.5 
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Table A.8 Combined bpa values from sources E1 and E2 using Zhang’s rule before 

re-normalization 

          E1      

      E2   

5.0}{ =Im  3.0}{ =IIm  2.0}{ =Θm  

6.0}{ =Im  0.3 0 0.06 

1.0}{ =IIm  0 0.03 0.01 

3.0}{ =Θm  0.075 0.045 0.03 

 

Step 4: Re-normalizing the combined bpa values given in Table A.8 as indicated in Table 

A.9 

Table A.9 Combined bpa values from sources E1 and E2 using Zhang’s rule after re-

normalization 

          E1      

      E2   

5.0}{ =Im  3.0}{ =IIm  2.0}{ =Θm  

6.0}{ =Im  0.5454 0 0.10909 

1.0}{ =IIm  0 0.05454 0.01818 

3.0}{ =Θm  0.1363 0.08181 0.05454 

 



www.manaraa.com

347 
 

 
 

Step 5: Find the value of bpa values using Zhang’s rule (equation (4.23) to obtain 

,1545.0}{and7909.0}{ == IImIm  .0545.0}{and =Θm  

Step 6: Calculate the belief values as Bel{I} = m{I} = 0.79091 and Bel{II} = m{II} = 

0.15455. 

Step 7: Determine the plausibility values from equation (3.10) as Pl{I} = 1 - Bel{II} = 

0.84545, and Pl{II} = 0.20909. 

(v) Murphy’s rule 

Step 1: Calculate the mean bpa set Em from E1 and E2, and the combined bpa values are 

calculated as in the case of Dempster’s rule (Table A.10). 

Step 2: Find the belief values as Bel{I} = m{I} = 0.740385 and Bel{II} = m{II} = 

0.179487.  

Step 3: Determine the plausibility values using equation (4.2) as Pl{I} = 1 - Bel{II} = 

0.820513 and Pl{II} = 0.259615. 
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Table A.10 Combination of bpa values for sources E1 and E2 using Murphy’s rule 

          E1      

      E2   

55.0}{ =Im  2.0}{ =IIm  25.0}{ =Θm  

55.0}{ =Im  0.3025 0.11 0.1375 

2.0}{ =IIm  0.11 0.04 0.05 

25.0}{ =Θm  0.1375 0.05 0.0625 
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Appendix-B 

B.1 INTRODUCTION 

Composite materials are formed by the combination of two or more materials to form a 

single structure with an identifiable interface. The properties of that new structure are 

dependent upon the properties of the constituent materials as well as the properties of the 

interface. The main constituents of composite materials, or composites, are fibers and 

matrix. In the more familiar world of metals, the mixing of different materials typically 

forms bonds at the atomic level (alloys), composites typically form molecular bonds in 

which the original materials retain their identity and mechanical properties. Additionally, 

where metal alloys (steel, brass, etc.) have isotropic characteristics (the same in all 

directions), composites can have very selective directional properties to meet specific 

application needs. The fibers provide most of the strength Thus, composites are typically 

highly engineered materials targeted at specific applications. The many advantages of 

composites may be summarized as:  

1. Stronger and stiffer than metals on a density basis  

• For the same strength, lighter than steel by 80% and aluminum by 60%  

• Superior stiffness-to-weight ratios  

2. Capable of high continuous operating temperatures  

• Up to 250°F in many composites  

3. Highly corrosion resistant  

• Essentially inert in the most corrosive environments 



www.manaraa.com

350 
 

 
 

4. Electrically insulating properties are inherent in most composites (depending on 

reinforcement selected).  

 

B.2 MECHANICS OF COMPOSITE MATERIALS 

The study of strength of composite materials is a complicated task, to meet several 

requirements, it must be easy to use but moreover it has to be effective and must fit to 

any case; which is a challenge considering the numerous fibers and matrices present in 

the aeronautical industry. They all have distinctive behaviors and properties which confer 

on them specific applications. 

 

Figure B.1 composite laminate in local and global coordinate system 
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The mechanics of composite materials deals mainly with the analysis of stresses and 

strains in the laminate [112,177]. This is usually performed by analyzing the stresses and 

strains in each lamina first. The results for all the laminas are then integrated over the 

length of the laminate to obtain the overall quantities. 

Consider a laminate shown in figure B.1. The 1-direction is called the fiber direction, 

while the 2- and 3-directions are called the matrix directions or the transverse directions. 

This 1-2-3 coordinate system is called the principal material coordinate system. The 

stresses and strains in the layer (also called a lamina) will be referred to the principal 

material coordinate system. The x-y-z coordinate system is called transformed or laminate 

or local coordinate system. The angle  is measured counterclockwise from x-axis to the 

1-axis.  

In the analysis of fiber-reinforced composite materials, the assumption of plane stress is 

usually used for each layer. This is mainly because fiber reinforced materials are utilized 

in beams, plates, cylinders, and other structural shapes which have at least one 

characteristic geometric dimension in an order of magnitude less than the other two 

dimensions. 

The stresses  on an element are related to the strains  by the following relations: 
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     (B.1) 

where [ , and E1, E2, and E3 are 

the extensional moduli of elasticity along the 1, 2, and 3 directions, respectively. Also,  

(i, j = 1, 2, 3) are the different Poisson’s ratios, while G12, G23, and G13 are the three shear 

moduli. 

     (B.2) 

The compact form of the equation (B.2) is 

  

where  and  represent the 6 × 1 strain and stress vectors, respectively, and [S] is 

called the compliance matrix. 

The inverse of the compliance matrix [S] is called the stiffness matrix [Q] given, in 

general, as follows: 
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               (B.3) 

The material constants appearing in the compliance matrix are not all independent. A 

material is called transversely isotropic if its behavior in the 2-direction is identical to its 

behavior in the 3-direction. For this case, E2 = E3, = , and G12 = G13. In addition, 

we have the following relation: 

             (B.4) 

A material is called isotropic if its behavior is the same in all three 1-2-3 directions. In 

this case, E1 = E2 = E3 = E, , and G12 = G23 = G13 = G. In addition, 

we have the following relation: 

             (B.5) 

Reduced compliance matrix: 

           (B.6) 

Reduced stiffness matrix: 

           (B.7) 
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            (B.8) 

If the material is homogenous and orthotropic: 

             (B.9) 

Transformed reduced stiffness matrix: 

           (B.10) 

There is two ways to calculate the  terms: The first way is given by 

           (B.11) 

where is the transformation matrix given as follows: 

         (B.12) 

The inverse of the matrix  is  given as follows: 

         (B.13) 

where   and  

The second way is to calculate each term of as follows [95]  
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     (B.14) 

     (B.15) 

           (B.16) 

     (B.17) 

    (B.18) 

           (B.19) 

    (B.20) 

           (B.21) 

    (B.22) 

The stiffness matrices of a laminate are defined as:  

Extensional stiffness 

         (B.23) 

Coupling stiffness 

         (B.24) 

Bending stiffness 

         (B.25) 
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Where k is the total number of plies in the laminate,  and  are the distances from 

the reference plane to the two surfaces of the kth ply; and are the elements of the 

stiffness matrix of the kth

     (B.26) 

 ply. With the following definitions of the stiffness matrices, the 

expressions for the in-plane forces and moments become [2] 

Bending moments: 

     (B.27) 

where  are the in-plane deformations and  are the curvatures. When 

the laminate is symmetrical, [B] = 0. The in-plane stresses in the kth

       (B.28) 

 layer are calculated 

as 

       (B.29) 

       (B.30) 

where  are terms from the inverse of the D matrix. 
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 In general, the maximum stress does not occur at the top or bottom of a laminated beam. 

The maximum stress location through the beam thickness depends on the lamination 

scheme. The 0° layers take the most axial stress.  

Also of importance is the response of the composite to a load applied transverse to the 

fibre direction. The stiffness and strength of the composite are expected to be much lower 

in this case, since the matrix is not shielded from carrying stress to the same degree as for 

axial loading. Prediction of the transverse stiffness of a composite from the elastic 

properties of the constituents is far more difficult than the axial value. 

    (B.31) 

If the laminate bottom is stress free, we have G(1) 

                                   (B.32) 

=0 

 

where             (B.33) 

The maximum deflection (Wmax) for various boundary conditions and different loads for 

the composite laminate beam with dimensions length (a), width (b) and height (h) are 

given in the Table B.1. We assume  and to be center load and uniformly distributed 

load (UDL) for the simply supported beam,  and  to be center load and UDL for the 

fully clamped beam,  and to be end load and UDL for the cantilever beam [176] 
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Table B.1 Maximum deflections for various beams for each load case 

Wmax Point load Uniformly distributed load 

Simply supported 
  at  

Fully clamped 
  at  

Cantilever 
  at  

 

where  and          (B.34) 

These equations are identical in form to those of Euler-Bernoulli; the solutions for 

deflections of isotropic beams can be readily used for laminated beams by replacing the 

modulus E with  and multiplying loads and mass inertias with b (width). 

Similarly, we can calculate critical buckling load, Ncr, for different cases as tabulated in 

Table B.2 
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Table B.2 Critical buckling load for various beams 

 Ncr 

Simply supported 
 

Fully clamped 
 

Cantilever 
 

 

To conclude the analysis of composite materials, there is one essential feature, the weight 

of a part made of composite materials. It can be calculated as [14]  

Weight =  

where = Density of composite material and   is volume of the composite.
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Appendix-C Computer Programs 

C.1 MATLAB PROGRAMS FOR COMPOSITE SIMPLY SUPPORTED BEAM 

The following is the matlab program required for constraint function for the two variable 

case for the composite problem described in page 253 and is needed to obtain optimum 

solutions tabulated in Table 8.8. It doesn’t require any input parameters. It should be used 

along with matlab program   

Constraint function 

function [c,ceq]= constraintcomposite(x) 

% global f3; 

format long 

P=500; 

L=1; 

t1=x(1); 

t2=x(2); 

t=4*(t1+t2); 

b=2*t; 

Ef=72.3e9; 

Em=5.05e9; 

Vf=0.6; 

muf=.22; 

mum=.35; 

%For isotropic materials 

Gm=Em/(2*(1+mum)); 

Gf=Ef/(2*(1+muf)); 

%Rule of mixtures
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E1=Ef*Vf+Em*(1-Vf); 

%Inverse rule of mixtures 

E2=Em*Ef/(Ef*(1-Vf)+Em*Vf); 

%Inverse rule of mixtures 

G12=Gm/(1-Vf+Vf*(Gm/Gf)); 

%Rule of mixtures 

mu12=muf*Vf+mum*(1-Vf); 

G13=G12; 

%With Semiempirical stress-partitioning parameter (SPP) technique 

n23=(3-4*mum+Gm/Gf)/(4*(1-mum)); 

G23=Gm*(Vf+n23*(1-Vf))/(n23*(1-Vf)+Vf*Gm/Gf); 

F1t=floor((4*t1+4*t2)/0.001)*1020e6; 

F2t=floor((4*t1+4*t2)/0.001)*40e6; 

F6=floor((4*t1+4*t2)/0.001)*60e6; 

F1c=floor((4*t1+4*t2)/0.001)*620e6; 

F2c=floor((4*t1+4*t2)/0.001)*140e6; 

rho=2.076e3; %Density of composite in kg/m3 

FS=3.5; %Factor of safety 

 

%we have delta=1-mu12*mu21=1-((mu12)^2)*(E2/E1); 

%calculation of Q plane stress reduced stiffness 

delta=1-((mu12)^2)*(E2/E1); 

Q11=E1/delta; 

Q12=mu12*E2/delta; 

Q21=Q12; 

Q22=E2/delta; 

Q66=G12; 
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Q26=0; 

Q62=Q26; 

Q16=Q26; 

Q61=Q16; 

 

Q=[Q11 Q12 Q16 

    Q21 Q22 Q26 

    Q61 Q62 Q66]; 

%theta orientations of layers  

theta=[90 45 -45 0 0 -45 45 90]; 

 

for i3=1:8 

T=zeros(3); 

m=cosd(theta(i3)); 

n=sind(theta(i3)); 

T=[m^2 n^2 2*m*n 

   n^2 m^2 -2*m*n 

   -m*n m*n m^2-n^2]; 

Qbar(:,:,i3)=inv(T)*Q*(inv(T))'; 

end 

 

%calculating h1, h2,....from thickness 

h(1)=-2*(t1+t2); 

h(2)=h(1)+t1; 

h(3)=h(2)+t2; 

h(4)=h(3)+t2; 

h(5)=h(4)+t1; 
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h(6)=h(5)+t1; 

h(7)=h(6)+t2; 

h(8)=h(7)+t2; 

h(9)=2*(t1+t2); 

D=zeros(3); 

for k=1:8 

    D=D+((h(k+1)^3-h(k)^3)/3)*Qbar(:,:,k); 

end 

 

Dstar=inv(D); 

Iyy=(b*t^3)/12; 

D11star=Dstar(1,1); 

Ebxx=12/(t^3*D11star); 

%calculating maximum deflection 

wmax=abs((P*b*(L^3))/(48*Ebxx*Iyy)); 

C3=-P*b*L; 

%calculating bending moment 

bmmax=-0.25*C3; 

j=1; 

M=[bmmax;0;0]; 

%finding stresses 

for i3=1:8 

sigmastress1(:,:,i3)=(1/b)*h(i3)*Qbar(:,:,i3)*Dstar; 

ss1(:,1,i3)=sigmastress1(:,:,i3)*M; 

sigmastress2(:,:,i3)=(1/b)*h(i3+1)*Qbar(:,:,i3)*Dstar; 

ss2(:,1,i3)=sigmastress2(:,:,i3)*M; 

sigmastress3(:,:,i3)=(1/b)*h(i3)*Qbar(:,:,i3)*Dstar; 
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ss3(:,1,i3)=sigmastress3(:,:,i3)*M; 

sigmastress4(:,:,i3)=(1/b)*h(i3+1)*Qbar(:,:,i3)*Dstar; 

ss4(:,1,i3)=sigmastress4(:,:,i3)*M; 

sigmastress5(:,:,i3)=(1/b)*h(i3)*Qbar(:,:,i3)*Dstar; 

ss5(:,1,i3)=sigmastress5(:,:,i3)*M; 

sigmastress6(:,:,i3)=(1/b)*h(i3+1)*Qbar(:,:,i3)*Dstar; 

ss6(:,1,i3)=sigmastress6(:,:,i3)*M; 

sslt(j)=ss1(1,:,i3); 

sstt(j)=ss3(2,:,i3); 

ssis(j)=ss5(3,:,i3); 

j=j+1; 

sslt(j)=ss2(1,:,i3); 

sstt(j)=ss4(2,:,i3); 

ssis(j)=ss6(3,:,i3); 

j=j+1; 

end 

 

%finding maximum and minimum stresses 

cF1t=max(sslt); 

cF2t=max(sstt); 

cF6=max(ssis); 

cF1c=-min(sslt); 

cF2tc=-min(sstt); 

 

% c = [wmax/.005-1;-0.9+x(3)+x(4);FS*cF1t/F1t-1;cF2t*FS/F2t-1;cF6*FS/F6-
1;cF1c*FS/F1c-1;cF2tc*FS/F2c-1]; 

 

% Nonlinear inequality constraints 
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c = [wmax/.005-1;FS*cF1t/F1t-1;cF2t*FS/F2t-1;cF6*FS/F6-1;cF1c*FS/F1c-
1;cF2tc*FS/F2c-1]; 

% Nonlinear equality constraints 

ceq = []; 

 

The following matlab program is used to calculate the objective function to find 
maximum buckling load for the two variable composite beam optimization problem 
described in page 253 and is needed to obtain optimum solution tabulated in Table 8.8. It 
doesn’t require any input parameters. It should be used along with matlab program in the 
section C.3  

C.2 OBJECTIVE FUNCTION FOR  f1 

function f= objcompositef1(x) 

P=500; 

L=1; 

t1=x(1); 

t2=x(2); 

t=4*(t1+t2); 

b=2*t; 

Ef=72.3e9; 

Em=5.05e9; 

Vf=0.6; 

muf=.22; 

mum=.35; 

Gm=Em/(2*(1+mum)); 

Gf=Ef/(2*(1+muf)); 

E1=Ef*Vf+Em*(1-Vf); 

E2=Em*Ef/(Ef*(1-Vf)+Em*Vf); 

%PMM 

% S3=0.49247-0.47603*Vf-.02748*Vf^2; 
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% G12=Gm*(1+(Vf*(1-Gm/Gf))/(Gm/Gf+S3*(1-Gm/Gf))) 

G12=Gm/(1-Vf+Vf*(Gm/Gf)); 

mu12=muf*Vf+mum*(1-Vf); 

G13=G12; 

n23=(3-4*mum+Gm/Gf)/(4*(1-mum)); 

G23=Gm*(Vf+n23*(1-Vf))/(n23*(1-Vf)+Vf*Gm/Gf); 

F1t=floor((4*t1+4*t2)/0.001)*1020e6; 

F2t=floor((4*t1+4*t2)/0.001)*40e6; 

F6=floor((4*t1+4*t2)/0.001)*60e6; 

F1c=floor((4*t1+4*t2)/0.001)*620e6; 

F2c=floor((4*t1+4*t2)/0.001)*140e6; 

rho=2.076e3; %kg/m3 

FS=3.5; 

%we have delta=1-mu12*mu21=1-((mu12)^2)*(E2/E1); 

%calculation of Q plane stress reduced stiffness 

delta=1-((mu12)^2)*(E2/E1); 

Q11=E1/delta; 

Q12=mu12*E2/delta; 

Q21=Q12; 

Q22=E2/delta; 

Q66=G12; 

Q26=0; 

Q62=Q26; 

Q16=Q26; 

Q61=Q16; 

 

Q=[Q11 Q12 Q16 
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    Q21 Q22 Q26 

    Q61 Q62 Q66]; 

theta=[90 45 -45 0 0 -45 45 90]; 

for i3=1:8 

T=zeros(3); 

m=cosd(theta(i3)); 

n=sind(theta(i3)); 

T=[m^2 n^2 2*m*n 

   n^2 m^2 -2*m*n 

   -m*n m*n m^2-n^2]; 

Qbar(:,:,i3)=inv(T)*Q*(inv(T))'; 

end 

 

h(1)=-2*(t1+t2); 

h(2)=h(1)+t1; 

h(3)=h(2)+t2; 

h(4)=h(3)+t2; 

h(5)=h(4)+t1; 

h(6)=h(5)+t1; 

h(7)=h(6)+t2; 

h(8)=h(7)+t2; 

h(9)=2*(t1+t2); 

% f2=rho*x(1)*b*L; 

D=zeros(3); 

for k=1:8 

    D=D+((h(k+1)^3-h(k)^3)/3)*Qbar(:,:,k); 

end 
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Dstar=inv(D); 

Iyy=(b*t^3)/12; 

D11star=Dstar(1,1); 

Ebxx=12/(t^3*D11star); 

wmax=abs((P*b*(L^3))/(48*Ebxx*Iyy)); 

C3=-P*b*L; 

bmmax=-0.25*C3; 

%critical buckling load 

Ncr=(pi*pi/12)*(Ebxx*t^3)/L^2; 

% To get buckling load in kN, we divide by 1000 

f1=Ncr/1000; 

 

The following matlab program is main program used to get minimization of buckling 
load (f1) for the two variable composite beam optimization problem described in the page 
253 and is needed to obtain optimum solutions tabulated in Table 8.8. It doesn’t require 
any input parameters. It should be placed in the same directory as that of matlab 
programs in sections C.1 and C.2   

 

C.3 MAIN MATLAB PROOGRAM FOR MINIMIZATION OF f1 

clc 

clear all 

x0 = [.004,0.004]; % Starting guess 

% [c,ceq] = constraintcomposite(x0)  

format long 

lb=[.001;0.001]; 

ub=[.015;0.015]; 

options = optimset('LargeScale','off'); 
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[x,fval,exitflag,output]=fmincon(@objcompositef1,x0,[],[],[],[],lb,ub,@constraintcompos
ite,options) 

[c,ceq] = constraintcomposite(x) 

 

C.4 OUTPUT OF THE MATLAB PROGRAM C.3  

The following is the output of the matlab program in section C.3 to obtain optimum 
solution tabulated in Table 8.8. Note that all the program in the sections C.1, C.2 and C.3 
should be present in the same directory. 

Optimization terminated: Search direction less than 2*options.TolX 

 and maximum constraint violation is less than options.TolCon. 

Active inequalities (to within options.TolCon = 1e-006): 

  lower      upper     ineqlin   ineqnonlin 

    1                                1 

 

x =    0.00100000000000   0.00202077781045 

fval =   20.56167244497333 

exitflag =      4 

output =  

       iterations: 10 

        funcCount: 51 

         stepsize: 1 

        algorithm: 'medium-scale: SQP, Quasi-Newton, line-search' 

    firstorderopt: 3.390678876522489e-006 

     cgiterations: [] 

          message: [1x129 char] 

c = 

   0.00000016490047 

  -0.99866403756274 
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  -0.97915768799494 

  -0.99147974182226 

  -0.99780212631289 

  -0.99404505371284 

ceq =    [] 

f1 =   20.56167244497333 

 

The following matlab program is in general the modified PSO algorithm described in the 
chapter 7 and used for the continuous optimization problems considered in the same 
chapter. The PSO parameters are used in this program are specifically used for the two 
variable composite beam optimization problem described in the page 253 and is needed 
to obtain optimum solutions tabulated in Table 8.9. It doesn’t require any input 
parameters.  

C.5 PSO MATLAB PROGRAM IN GENERAL  

% a generic particle swarm optimizer 

%dynamic maximum velocity is a exponential decreasing function (natural) 

% Usage: 

%  [optOUT]=PSO(functname,D) 

% or: 

%  [optOUT]=PSO(functname,D,mv,VarRange,minmax,PSOparams) 

% 

% Inputs: 

%    functname - string of matlab function to optimize 

%    D - # of inputs to the function (dimension of problem) 

%     

% Optional Inputs: 

%    mv - max particle velocity, either a scalar or a vector of length D 

%           (this allows each component to have it's own max velocity),  

%           default = 4 
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%    VarRange - matrix of ranges for each input variable,  

%      default -100 to 100, of form: 

%       [ min1 max1  

%         min2 max2 

%            ... 

%         minD maxD ] 

% 

%    minmax = 0, funct minimized (default) 

%           = 1, funct maximized 

 

% 

%    PSOparams - PSO parameters 

%      P(1) - Epochs between updating display, default = 100. if 0,  

%             no display 

%      P(2) - Maximum number of iterations (epochs) to train, default = 2000. 

%      P(3) - population size, default = 24 

% 

%      P(4) - acceleration const 1 (local best influence), default = 2 

%      P(5) - acceleration const 2 (global best influence), default = 2 

%      P(6) - Initial inertia weight, default = 0.9 

%      P(7) - Final inertia weight, default = 0.4 

%      P(8) - Epoch when inertial weight at final value, default = 1500 

%      P(9)- minimum global error gradient,  

%                 if abs(Gbest(i+1)-Gbest(i)) < gradient over  

%                 certain length of epochs, terminate run, default = 1e-25 

%      P(10)- epochs before error gradient criterion terminates run,  

%                 default = 150, if the SSE does not change over 250 epochs 
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%                               then exit 

%      P(11)- error goal, if NaN then unconstrained min or max, default=NaN 

%      P(12)- type flag (which kind of PSO to use) 

%                 0 = Common PSO w/intertia (default) 

%      P(13)- PSOseed, default=0 

%               = 0 for initial positions all random 

 

function [OUT,varargout]=compositebeampso(functname,D,varargin) 

timestart=cputime; 

disp(['PSO start time at ',datestr(now,13)]); 

global CNT i; 

CNT=0; 

rand('state',sum(100*clock)); 

if nargin < 2 

   error('Minimum number of arguments is 2'); 

end 

 

if nargin == 4  % specified functname, D, mv, Varrange 

   mv=varargin{1}; 

   if isnan(mv) 

       mv=4; 

   end 

   VR=varargin{2}; %VarRange - matrix of ranges for each input variable 

   minmax = 0; 

   P = []; 

   plotfcn='goplotpso';    

else     
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   error('Wrong # of input arguments.'); 

end 

 

% sets up default pso paramaters 

Pdef = [20 800 10 2 2 0.9 0.4 790 1e-8 350 NaN 0 0]; 

Plen = length(P); 

P    = [P,Pdef(Plen+1:end)]; %store default pso parameters into P 

 

df      = P(1); 

me      = P(2); 

ps      = P(3); 

ac1     = P(4); 

ac2     = P(5); 

iw1     = P(6); 

iw2     = P(7); 

iwe     = P(8); 

ergrd   = P(9); 

ergrdep = P(10); 

errgoal = P(11); 

trelea  = P(12); 

PSOseed = P(13); 

 

mvmax=mv; 

mvmin=0.001; % minimum limit for maximum velocity 

% set plotting flag 

if df~=0 

  plotflg=1; 
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else 

  plotflg=0; 

end 

% preallocate variables for speed up 

 tr = ones(1,me)*NaN; 

% take care of setting max velocity and position params here 

if length(mv)==1 

 velmaskmin = -mv*ones(ps,D);     % min vel, psXD matrix 

 velmaskmax = mv*ones(ps,D);      % max vel 

else 

 error('Max vel must be either a scalar or same length as prob dimension D'); 

end 

posmaskmin  = repmat(VR(1:D,1)',ps,1);  % min pos, psXD matrix 

posmaskmax  = repmat(VR(1:D,2)',ps,1);  % max pos 

 

% 3=bounce method (see comments below inside epoch loop) 

posmaskmeth = 3;  

% PLOTTING 

 message = sprintf('PSO: %%g/%g iterations, GBest = %%20.20g.\n',me); 

 

% initialize population of particles and their velocities at time zero, 

% construct random population positions bounded by VR 

 

  pos(1:ps,1:D) = normmat(rand([ps,D]),VR',1); 

  

% construct initial random velocities between -mv,mv 

  vel(1:ps,1:D) = normmat(rand([ps,D]),[forcecol(-mv),forcecol(mv)]',1); 
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% initial pbest positions vals 

 pbest = pos; 

  

 i=1; %initializing iteration number 

 

 out = feval(functname,pos);  % returns column of cost values (1 for each particle) 

  

 pbestval=out;   % initially, pbest is same as pos 

  

% assign initial gbest here also (gbest and gbestval) 

if minmax == 0 

           [gbestval,idx1] = min(pbestval);         

end 

 % preallocate a variable to keep track of gbest for all iters 

 bestpos        = zeros(me,D+1)*NaN; 

 gbest          = pbest(idx1,:);  % this is gbest position 

 

 bestpos(1,1:D) = gbest; 

 sentryval = gbestval; 

 sentry    = gbest; 

% INITIALIZE END  

 

rstflg = 0; % for dynamic environment checking 

% start PSO iterative procedures 

 cnt    = 0; % counter used for updating display according to df in the options 

 cnt2   = 0; % counter used for the stopping subroutine based on error convergence 



www.manaraa.com

376 
 

 
 

 iwt(1) = iw1; 

 gbestprev=gbest; 

while i<me  % start epoch loop (iterations) 

if i==1 

    outbestval=gbestval; 

end 

 

if i>1 

     out       = feval(functname,[pos;gbest]); 

     outbestval = out(end,:); 

     out        = out(1:end-1,:); 

end 

 

     tr(i+1)          = gbestval; % keep track of global best val 

     te               = i; % returns epoch number to calling program when done 

     bestpos(i,1:D+1) = [gbest,gbestval]; 

 

   % this section does the plots during iterations    

    if plotflg==1       

        if (rem(i,df) == 0 ) | (i==me) | (i==1)  

         fprintf(message,i,gbestval); 

         cnt = cnt+1; % count how many times we display (useful for movies) 

           

         eval(plotfcn); % defined at top of script 

          

      end  % end update display every df if statement     

    end % end plotflg if statement 
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    % check for an error space that changes wrt time/iter 

    % threshold value that determines dynamic environment  

    % sees if the value of gbest changes more than some threshold value 

    % for the same location 

    chkdyn = 1; 

    rstflg = 0; % for dynamic environment checking 

 

    if chkdyn==1 

     threshld = 0.05;  % percent current best is allowed to change, .05 = 5% etc 

     letiter  = 5; % # of iterations before checking environment, leave at least 3 so PSO has 
time to converge 

     outorng  = abs( 1- (outbestval/gbestval) ) >= threshld; 

     samepos  = (max( sentry == gbest )); 

 

     if (outorng & samepos) & rem(i,letiter)==0 

         rstflg=1; 

 

        pbest     = pos; % reset personal bests to current positions 

        pbestval  = out;  

        vel       = vel; % agitate particles a little (or a lot) 

         

       % recalculate best vals  

        if minmax == 0 

           [gbestval,idx1] = min(pbestval);         

        end         

        gbest  = pbest(idx1,:); 

     end  % end if outorng 
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     sentryval = gbestval; 

     sentry    = gbest; 

      

    end % end if chkdyn 

     

    % find particles where we have new pbest, depending on minmax choice  

    % then find gbest and gbestval 

    if rstflg == 0 

     if minmax == 0 

        [tempi]            = find(pbestval>=out); % new min pbestvals 

        pbestval(tempi,1)  = out(tempi);   % update pbestvals 

        pbest(tempi,:)     = pos(tempi,:); % update pbest positions 

        

        [iterbestval,idx1] = min(pbestval); 

         

        if gbestval >= iterbestval 

            gbestval = iterbestval; 

            gbest    = pbest(idx1,:); 

        end 

     end 

    end     

      % get new velocities, positions (this is the heart of the PSO algorithm)      

      % each epoch get new set of random numbers 

       rannum1 = rand([ps,D]); % for Trelea and Clerc types 

       rannum2 = rand([ps,D]);        
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        % modified PSO algo with inertia wt  

        % get inertia weight, just a linear funct w.r.t. epoch parameter iwe 

         if i<=iwe 

            iwt(i) = ((iw2-iw1)/(iwe-1))*(i-1)+iw1; 

         else 

            iwt(i) = iw2; 

         end 

          

         a=(log(mvmax/mvmin))/(iwe-1); 

         b=a+log(mvmax); 

         if i<=iwe 

            maxv(i) = exp(-a*i+b); 

         else 

            maxv(i) = mvmin; 

         end 

         velmaskmin = -maxv(i)*ones(ps,D);     % min vel, psXD matrix 

        velmaskmax = maxv(i)*ones(ps,D);      % max vel  

                  

        % random number including acceleration constants 

         ac11 = rannum1.*ac1;    % for common PSO w/inertia 

         ac22 = rannum2.*ac2; 

          

         vel = iwt(i).*vel...                             % prev vel 

               +ac11.*(pbest-pos)...                      % independent 

               +ac22.*(repmat(gbest,ps,1)-pos);           % social                   
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       % limit velocities here using masking 

        vel = ( (vel <= velmaskmin).*velmaskmin ) + ( (vel > velmaskmin).*vel ); 

        vel = ( (vel >= velmaskmax).*velmaskmax ) + ( (vel < velmaskmax).*vel );      

         

       % update new position (PSO algo)     

        pos = pos + vel; 

     

       % position masking, limits positions to desired search space 

        minposmask_throwaway = pos <= posmaskmin;  % these are psXD matrices 

        minposmask_keep      = pos >  posmaskmin;      

        maxposmask_throwaway = pos >= posmaskmax; 

        maxposmask_keep      = pos <  posmaskmax; 

      

        if posmaskmeth == 3 

         % this is the bounce method, particles bounce off the boundaries with -vel       

          pos = ( minposmask_throwaway.*posmaskmin ) + ( minposmask_keep.*pos ); 

          pos = ( maxposmask_throwaway.*posmaskmax ) + ( maxposmask_keep.*pos ); 

 

          vel = (vel.*minposmask_keep) + (-vel.*minposmask_throwaway); 

          vel = (vel.*maxposmask_keep) + (-vel.*maxposmask_throwaway); 

        else 

         % no change, this is the original Eberhart, Kennedy method,  

         % it lets the particles grow beyond bounds if psoparams (P) 

         % especially Vmax, aren't set correctly, see the literature 

        end 

      

% check for stopping criterion based on speed of convergence to desired error    
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    tmp1 = abs(tr(i) - gbestval); 

    if tmp1 > ergrd 

       cnt2 = 0; 

    elseif tmp1 <= ergrd 

       cnt2 = cnt2+1; 

       if cnt2 >= ergrdep 

         if plotflg == 1 

          fprintf(message,i,gbestval);            

          disp(' '); 

          disp(['--> Solution likely, GBest hasn''t changed by at least ',... 

              num2str(ergrd),' for ',... 

                  num2str(cnt2),' epochs.']);   

          eval(plotfcn); 

         end        

         break 

       end 

    end 

    i=i+1; 

%     if i==700 

%         i=799 

%     end 

 

end  % end epoch loop 

 

 OUT=[gbest';gbestval]; 

 varargout{1}=[1:te]; 

 varargout{2}=[tr(find(~isnan(tr)))];  
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 disp(['PSO end time at ',datestr(now,13)]); 

 fprintf('No. of function evaluations = %d\n',CNT*ps); 

fprintf('Total CPU time %f sec',cputime-timestart); 

return 

 

The following matlab program is used to calculate the objective function to find the 
optimum solution using modified game theory for the two variable composite beam 
optimization problem described in page 253 and is needed to obtain optimum solution 
tabulated in Table 8.9. It doesn’t require any input parameters. It should be used along 
with matlab programs in the sections C.5 and C.7  

C.6 OBJECTIVE FUNCTION REQUIRED FOR COMPOSITE BEAM 
PROBLEM ALONG WITH C.5 

 

function [out]= objcompgamemod(in) 

warning off 

global CNT i; 

% i=1; 

CNT=CNT+1; 

const=0.5; 

alpha=2; 

ck=(const*i)^alpha; 

consta=150; 

constb=10; 

% global f3; 

for i2=1:size(in,1) 

x1=in(i2,1); 

x2=in(i2,2); 

x3=in(i2,3); 

P=500; 
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L=1; 

t1=x1; 

t2=x2; 

t=4*(t1+t2); 

b=2*t; 

Ef=72.3e9; 

Em=5.05e9; 

Vf=0.6; 

muf=.22; 

mum=.35; 

%For isotropic materials 

Gm=Em/(2*(1+mum)); 

Gf=Ef/(2*(1+muf)); 

%Rule of mixtures 

E1=Ef*Vf+Em*(1-Vf); 

%Inverse rule of mixtures 

E2=Em*Ef/(Ef*(1-Vf)+Em*Vf); 

%Inverse rule of mixtures 

G12=Gm/(1-Vf+Vf*(Gm/Gf)); 

%Rule of mixtures 

mu12=muf*Vf+mum*(1-Vf); 

G13=G12; 

%With Semiempirical stress-partitioning parameter (SPP) technique 

n23=(3-4*mum+Gm/Gf)/(4*(1-mum)); 

G23=Gm*(Vf+n23*(1-Vf))/(n23*(1-Vf)+Vf*Gm/Gf); 

F1t=floor((4*t1+4*t2)/0.001)*1020e6; 

F2t=floor((4*t1+4*t2)/0.001)*40e6; 
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F6=floor((4*t1+4*t2)/0.001)*60e6; 

F1c=floor((4*t1+4*t2)/0.001)*620e6; 

F2c=floor((4*t1+4*t2)/0.001)*140e6; 

rho=2.076e3; %Density of composite in kg/m3 

FS=3.5; %Factor of safety 

 

%we have delta=1-mu12*mu21=1-((mu12)^2)*(E2/E1); 

%calculation of Q plane stress reduced stiffness 

delta=1-((mu12)^2)*(E2/E1); 

Q11=E1/delta; 

Q12=mu12*E2/delta; 

Q21=Q12; 

Q22=E2/delta; 

Q66=G12; 

Q26=0; 

Q62=Q26; 

Q16=Q26; 

Q61=Q16; 

 

Q=[Q11 Q12 Q16 

    Q21 Q22 Q26 

    Q61 Q62 Q66]; 

theta=[90 45 -45 0 0 -45 45 90]; 

for i3=1:8 

T=zeros(3); 

m=cosd(theta(i3)); 

n=sind(theta(i3)); 
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T=[m^2 n^2 2*m*n 

   n^2 m^2 -2*m*n 

   -m*n m*n m^2-n^2]; 

Qbar(:,:,i3)=inv(T)*Q*(inv(T))'; 

end 

 

h(1)=-2*(t1+t2); 

h(2)=h(1)+t1; 

h(3)=h(2)+t2; 

h(4)=h(3)+t2; 

h(5)=h(4)+t1; 

h(6)=h(5)+t1; 

h(7)=h(6)+t2; 

h(8)=h(7)+t2; 

h(9)=2*(t1+t2); 

f2=rho*4*(t1+t2)*b*L/100; 

D=zeros(3); 

for k=1:8 

    D=D+((h(k+1)^3-h(k)^3)/3)*Qbar(:,:,k); 

end 

 

Dstar=inv(D); 

Iyy=(b*t^3)/12; 

D11star=Dstar(1,1); 

Ebxx=12/(t^3*D11star); 

wmax=abs((P*b*(L^3))/(48*Ebxx*Iyy)); 

C3=-P*b*L; 
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bmmax=-0.25*C3; 

Ncr=(pi*pi/12)*(Ebxx*t^3)/L^2; 

f1=-Ncr/100000000; 

j=1; 

M=[bmmax;0;0]; 

for i3=1:8 

sigmastress1(:,:,i3)=(1/b)*h(i3)*Qbar(:,:,i3)*Dstar; 

ss1(:,1,i3)=sigmastress1(:,:,i3)*M; 

sigmastress2(:,:,i3)=(1/b)*h(i3+1)*Qbar(:,:,i3)*Dstar; 

ss2(:,1,i3)=sigmastress2(:,:,i3)*M; 

sigmastress3(:,:,i3)=(1/b)*h(i3)*Qbar(:,:,i3)*Dstar; 

ss3(:,1,i3)=sigmastress3(:,:,i3)*M; 

sigmastress4(:,:,i3)=(1/b)*h(i3+1)*Qbar(:,:,i3)*Dstar; 

ss4(:,1,i3)=sigmastress4(:,:,i3)*M; 

sigmastress5(:,:,i3)=(1/b)*h(i3)*Qbar(:,:,i3)*Dstar; 

ss5(:,1,i3)=sigmastress5(:,:,i3)*M; 

sigmastress6(:,:,i3)=(1/b)*h(i3+1)*Qbar(:,:,i3)*Dstar; 

ss6(:,1,i3)=sigmastress6(:,:,i3)*M; 

sslt(j)=ss1(1,:,i3); 

sstt(j)=ss3(2,:,i3); 

ssis(j)=ss5(3,:,i3); 

j=j+1; 

sslt(j)=ss2(1,:,i3); 

sstt(j)=ss4(2,:,i3); 

ssis(j)=ss6(3,:,i3); 

j=j+1; 

end 
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cF1t=max(sslt); 

cF2t=max(sstt); 

cF6=max(ssis); 

cF1c=-min(sslt); 

cF2tc=-min(sstt); 

 

cc=zeros(6,1); 

g=0.0; 

c = [wmax/.005-1;FS*cF1t/F1t-1;cF2t*FS/F2t-1;cF6*FS/F6-1;cF1c*FS/F1c-
1;cF2tc*FS/F2c-1]; 

 

for i1=1:6     

        if cc(i1,1)>0 

            if cc(i1,1)<=1 

                gammaqx=1; 

            else 

                gammaqx=2; 

            end 

            thetaqx=consta*(1-1/exp(cc(i1,1)))+constb; 

            hx=thetaqx*(cc(i1,1))^gammaqx; 

            g=g+ck*hx; 

        end 

end 

f1w=-20.56610040952907/100000; 

f2w=59.788/100; 

f1star=-20217.8581711447/100000; 

f2star=0.600922712638432/100; 
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f1n=(f1w-f1)/(f1w-f1star); 

f2n=(f2w-f2)/(f2w-f2star); 

fc=x3*f1n+f2n*(1-x3); 

ff=fc-(1-f1n)*(1-f2n); 

out(i2,1)=ff+ck*g; 

end 

 

The following matlab program is main program used to get the optimum solution using 
modified game theory for the two variable composite beam optimization problem 
described in the page 253. It doesn’t require any input parameters. It should be placed in 
the same directory as that of matlab programs in sections C.5 and C.6   

C.7 MAIN OPTIMIZATION PROGRAM (DETERMINISTIC) 

clc 

clear all 

format long 

out=compositebeampso('objcompgamemod',3,0.05,[0.001 0.015; 0.001 0.015;0.1 0.7]) 

 

C.8 OUTPUT OF THE MATLAB PROGRAM IN THE SECTION C.7  

The following is the output of the matlab program in the section C.7 to obtain optimum 
solution tabulated in Table 8.9. Note that all the program in the sections C.5,C.6 and C.7 
should be present in the same directory. 

PSO start time at 08:05:49 

PSO: 1/800 iterations, GBest =  0.13553899823459714. 

PSO: 20/800 iterations, GBest = 0.082996840248725612. 

PSO: 40/800 iterations, GBest = 0.079821180437261385. 

PSO: 60/800 iterations, GBest = 0.079821180437261385. 

PSO: 80/800 iterations, GBest = 0.079821180437261385. 

PSO: 100/800 iterations, GBest = 0.079821180437261385. 
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PSO: 120/800 iterations, GBest = 0.079821180437261385. 

PSO: 140/800 iterations, GBest = 0.079821180437261385. 

PSO: 160/800 iterations, GBest = 0.079821180437261385. 

PSO: 180/800 iterations, GBest = 0.079821180437261385. 

PSO: 200/800 iterations, GBest = 0.079821180437261385. 

PSO: 220/800 iterations, GBest = 0.059947899703387264. 

PSO: 240/800 iterations, GBest = 0.058502905280338746. 

PSO: 260/800 iterations, GBest = 0.058419282352298207. 

PSO: 280/800 iterations, GBest = 0.051481484515911224. 

PSO: 300/800 iterations, GBest =  0.03740741548166876. 

PSO: 320/800 iterations, GBest = 0.025436018410963379. 

PSO: 340/800 iterations, GBest = 0.025421814124444692. 

PSO: 360/800 iterations, GBest = 0.025421708813983285. 

PSO: 380/800 iterations, GBest =  0.02542170805166355. 

PSO: 400/800 iterations, GBest = 0.025421708044712332. 

PSO: 420/800 iterations, GBest = 0.025421708030273299. 

PSO: 440/800 iterations, GBest = 0.025421708029904955. 

PSO: 460/800 iterations, GBest = 0.025421708029904344. 

PSO: 480/800 iterations, GBest = 0.025421708029904261. 

PSO: 500/800 iterations, GBest = 0.025421708029904261. 

PSO: 520/800 iterations, GBest = 0.025421708029904233. 

PSO: 540/800 iterations, GBest =  0.02542170802990415. 

PSO: 560/800 iterations, GBest = 0.025421708029903956. 

PSO: 580/800 iterations, GBest = 0.025421708029903956. 

PSO: 600/800 iterations, GBest = 0.025421708029903956. 

PSO: 620/800 iterations, GBest = 0.025421708029903956. 

PSO: 640/800 iterations, GBest = 0.025421708029903956. 
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PSO: 660/800 iterations, GBest = 0.025421708029903956. 

PSO: 680/800 iterations, GBest = 0.025421708029903956. 

PSO: 700/800 iterations, GBest = 0.025421708029903956. 

PSO: 703/800 iterations, GBest = 0.025421708029903956. 

  

--> Solution likely, GBest hasn't changed by at least 1e-008 for 350 epochs. 

PSO end time at 08:06:21 

No. of function evaluations = 7030 

Total CPU time 30.997399 sec 

out = 

 

   0.01178069750772 

   0.01500000000000 

   0.10000000000000 

   0.02542170802990 

 

The following matlab program is used to calculate the objective function for design of 
welded beam problem in section 7.4.1 on page 206 and is needed to obtain optimum 
solution tabulated in Table 7.1. It doesn’t require any input parameters. It should be used 
along with matlab program in the sections C.5 with change the function name to 
“weldbeampso”. 

C.9 OBJECTIVE FUNCTION FOR THE DESIGN OF WELDED BEAM 
PROBLEM 

function [out]= spoobjfunweld(in) 

global CNT i; 

CNT=CNT+1; 

const=0.5; 

alpha=2; 

ck=(const*i)^alpha; 
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consta=150; 

constb=10; 

 

x1=in(:,1); 

x2=in(:,2); 

x3=in(:,3); 

x4=in(:,4); 

f=1.10471*x1.*x1.*x2+0.04811*x3.*x4.*(14.0+x2); 

P=6000; 

E=30e6; 

G=12e6; 

smax=30000; 

deltamax=0.25; 

shearmax=13600; 

L=14; 

j1=(2/2^0.5)*x1.*x2; 

j2=((x2.^2)/12+((x1+x3)./2).^2); 

J=j1.*j2; 

S=6*P*L./(x4.*x3.*x3); 

K=(4*P*L^3)./(E*(x3.^3).*x4); 

pc1=1-(x3./(2.*L))*(E./(4.*G))^(1/2); 

pc2=4.013.*((E.*G.*(x3.^2 ).*(x4.^6)./36)).^(1/2); 

Pc=pc1.*pc2./(L*L); 

M=P*(L+x2./2); 

R=((x2.^2)/4+((x1+x3)./2).^2).^0.5; 

A=P./(x1.*x2.*1.414); 

B=M.*R./J; 
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T = (A.^2+2.*A.*B.*(x2./(2.*R))+B.^2).^0.5; 

g1=1.10471*x1.*x1+0.04811*x3.*x4.*(14.0+x2)-5.0; 

 

for i2=1:size(in,1) 

c=zeros(7,1); 

g=0.0; 

c = [T(i2,1)-shearmax;S(i2,1)-smax;x1(i2,1)-x4(i2,1);0.125-x1(i2,1);g1(i2,1);K(i2,1)-
deltamax;P-Pc(i2,1)]; 

for i1=1:7     

        if c(i1,1)>0 

            if c(i1,1)<=1 

                gammaqx=1; 

            else 

                gammaqx=2; 

            end 

            thetaqx=consta*(1-1/exp(c(i1,1)))+constb; 

            hx=thetaqx*(c(i1,1))^gammaqx; 

            g=g+ck*hx; 

        end 

end 

out(i2,1)=f(i2,1)+ck*g; 

end 

out; 

The matlab program in the sections C.5 with change the function name to 
“weldbeampso” and matlab program in the section C.9 should be placed in the same 
directory.  The optimum solution obtained for design of welded beam problem in section 
7.4.1 on page 206 is as shown section C.10 and is tabulated in Table 7.1 We get the 
following output, as described in the section C.10, when use the following code at the 
matlab prompt. 
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>> out = weldbeampso('spoobjfunweld',4,2,[0.1 2.0;0.1 10;0.1 10;0.1 2.0]) 

C.10 OUTPUT/ OPTIMUM SOLUTION FOR THE DESIGN OF WELDED BEAM 
PROBLEM 

PSO start time at 16:54:58 

PSO: 1/2000 iterations, GBest =   11.600078268703111. 

PSO: 50/2000 iterations, GBest =   4.7268530105574857. 

PSO: 100/2000 iterations, GBest =   3.6929675084922176. 

PSO: 150/2000 iterations, GBest =   3.6929675084922176. 

PSO: 200/2000 iterations, GBest =   3.0896019039198981. 

PSO: 250/2000 iterations, GBest =   3.0896019039198981. 

PSO: 300/2000 iterations, GBest =   3.0896019039198981. 

PSO: 350/2000 iterations, GBest =   2.7443504894923256. 

PSO: 400/2000 iterations, GBest =   2.7443504894923256. 

PSO: 450/2000 iterations, GBest =   2.5690241167803718. 

PSO: 500/2000 iterations, GBest =   2.4644430980423846. 

PSO: 550/2000 iterations, GBest =   2.4142986651480607. 

PSO: 600/2000 iterations, GBest =   2.4130985072240807. 

PSO: 650/2000 iterations, GBest =   2.3871643157891791. 

PSO: 700/2000 iterations, GBest =   2.3827797928594032. 

PSO: 750/2000 iterations, GBest =    2.382767943345498. 

PSO: 800/2000 iterations, GBest =   2.3823256886358504. 

PSO: 850/2000 iterations, GBest =   2.3818374278046397. 

PSO: 900/2000 iterations, GBest =   2.3816125867753861. 

PSO: 950/2000 iterations, GBest =   2.3813514495268513. 

PSO: 1000/2000 iterations, GBest =   2.3812658028586959. 

PSO: 1050/2000 iterations, GBest =   2.3812243960409996. 

PSO: 1100/2000 iterations, GBest =   2.3812010944293842. 

PSO: 1150/2000 iterations, GBest =   2.3812003169795446. 
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PSO: 1200/2000 iterations, GBest =   2.3811865786946704. 

PSO: 1250/2000 iterations, GBest =   2.3811807081169056. 

PSO: 1300/2000 iterations, GBest =   2.3811796868955026. 

PSO: 1350/2000 iterations, GBest =   2.3811793822946741. 

PSO: 1400/2000 iterations, GBest =   2.3811790013166698. 

PSO: 1450/2000 iterations, GBest =   2.3811777126040239. 

PSO: 1500/2000 iterations, GBest =   2.3811455203452581. 

PSO: 1550/2000 iterations, GBest =   2.3811455067987972. 

PSO: 1600/2000 iterations, GBest =   2.3811442702488388. 

PSO: 1650/2000 iterations, GBest =   2.3811442693440239. 

PSO: 1700/2000 iterations, GBest =   2.3811442693440212. 

PSO: 1750/2000 iterations, GBest =   2.3811400963891862. 

PSO: 1800/2000 iterations, GBest =    2.381139995411139. 

PSO: 1850/2000 iterations, GBest =   2.3811399862981615. 

PSO: 1900/2000 iterations, GBest =   2.3811399849397135. 

PSO: 1950/2000 iterations, GBest =    2.381139984927044. 

PSO: 2000/2000 iterations, GBest =   2.3811399849269828. 

PSO end time at 16:55:10 

No. of function evaluations = 24000 

Total CPU time 12.355279 sec 

out = 

 

    0.2443 

    6.2159 

    8.2944 

    0.2443 

    2.3811 
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The following matlab program is used to combine evidence from two sources using 
Dempster’s rule for the problem described in section 4.2.1 on page 76 and is needed to 
obtain optimum solution tabulated in Table 4.3.  

C.11 DEMPSTER-SHAFER COMBINATION RULE FOR COMBINING TWO 
EVIDENCES E1 AND E2 

function [bela belb belc pla plb plc normk]=dempster2(m1,m2) 

% m1=[.1 .1 .1 .1 .1 .1 .4]; %Evidence E1 

% m2=[.2 .3 .1 0 .1 .1 .2];%Evidence E2 

sum=0; 

a=0; 

b=a; 

c=a; 

d=a; 

e=a; 

f=a; 

pi=a; 

for i=1:7 

    for j=1:7 

                sum=sum+m1(i)*m2(j); 

                if i==7 && j==7  

                    theta=m1(i)*m2(j); 

                elseif (i==1 || i==7) && (j==1 || j==7)  

                    a=a+m1(i)*m2(j); 

                elseif (i==2 || i==7) && (j==2 || j==7)  

                    b=b+m1(i)*m2(j); 

                elseif (i==3 || i==7) && (j==3 || j==7)  

                    c=c+m1(i)*m2(j); 

                elseif (i==1 || i==4 || i==6) && (j==1 || j==4 || j==6) && i~=j 
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                    a=a+m1(i)*m2(j); 

                elseif (i==2 || i==4 || i==5) && (j==2 || j==4 || j==5) && i~=j 

                    b=b+m1(i)*m2(j); 

                elseif (i==3 || i==5 || i==6) && (j==3 || j==5 || j==6) && i~=j 

                    c=c+m1(i)*m2(j); 

                elseif (i==4 || i==7) && (j==4 || j==7)  

                    d=d+m1(i)*m2(j); 

                elseif (i==5 || i==7) && (j==5 || j==7)  

                    e=e+m1(i)*m2(j); 

                elseif (i==6 || i==7) && (j==6 || j==7)  

                    f=f+m1(i)*m2(j); 

                else 

                    [i j]; 

                    pi=pi+m1(i)*m2(j); 

                end 

            

    end 

end 

 

normk=1-pi; 

bela=a/normk; 

belb=b/normk; 

belc=c/normk; 

beld=d/normk; 

bele=e/normk; 

belf=f/normk; 

pla=1-belb-belc-bele; 
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plb=1-bela-belc-belf; 

plc=1-bela-belb-beld; 

BIA=[bela pla] 

BIB=[belb plb] 

BIC=[belc plc] 

qtheta=pi+theta;  

 

If  m1 = [.5 .1 .1 0 0 0 .3]; %Evidence E1 

 and m2 = [.6 .1 .1 0 0 0 .2];%Evidence E2 

are given then dempster2(m1,m2) at the command prompt gives the following result. 

The BIA, BIB, and BIC gives the belief intervals for A,B and C respectively. 

>> dempster2(m1,m2); 

BIA =     0.0009    0.2096 

BIB =     0.0016    0.2103 

BIC =    0.7888    0.9976 

ans =   8.7562e-004  

 

The following matlab program is used to combine evidence from four sources using 
Yager’s rule for the problem described in section 4.4 on page 96 and is needed to obtain 
optimum solution tabulated in Table 4.11.  

C.12 YAGER’S COMBINATION RULE FOR COMBINING FOUR EVIDENCES 
E1, E2, E3 and E4 

function [bela belb belc pla plb plc]=yagers4(m1,m2,m3,m4) 

%clc 

% m1=[.1 .1 .1 .1 .1 .1 .4]; 

% m2=m1; 

% m3=m1; 

% m4=m1; 
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sum=0; 

a=0; 

b=a; 

c=a; 

d=a; 

e=a; 

f=a; 

pi=a; 

 

for i=1:7 

    for j=1:7 

        for k=1:7 

            for l=1:7 

                sum=sum+m1(i)*m2(j)*m3(k)*m4(l); 

                if i==7 && j==7 && k==7 && l==7  

                    theta=m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==1 || i==7) && (j==1 || j==7) && (k==1 || k==7) && (l==1 || l==7) 

                    a=a+m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==2 || i==7) && (j==2 || j==7) && (k==2 || k==7) && (l==2 || l==7) 

                    b=b+m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==3 || i==7) && (j==3 || j==7) && (k==3 || k==7) && (l==3 || l==7) 

                    c=c+m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==4 || i==7) && (j==4 || j==7) && (k==4 || k==7) && (l==4 || l==7) 

                    d=d+m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==5 || i==7) && (j==5 || j==7) && (k==5 || k==7) && (l==5 || l==7) 

                    e=e+m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==6 || i==7) && (j==6 || j==7) && (k==6 || k==7) && (l==6 || l==7) 
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                    f=f+m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==1 || i==4 || i==6 || i==7) && (j==1 || j==4 || j==6 || j==7) && (k==1 || 
k==4 || k==6 || k==7) && (l==1 || l==4 || l==6 || l==7)  

                    if (i==1 && j==1 && k==1 && l==1)|| (i==4 && j==4 && k==4 && 
l==4)||(i==6 && j==6 && k==6 && l==6) 

                        ; 

                    else 

                    a=a+m1(i)*m2(j)*m3(k)*m4(l); 

                    end 

                elseif (i==2 || i==4 || i==5 || i==7) && (j==2 || j==4 || j==5|| j==7) && (k==2 || 
k==4 || k==5|| k==7) && (l==2 || l==4 || l==5|| l==7)  

                    if (i==2 && j==2 && k==2 && l==2)|| (i==4 && j==4 && k==4 && 
l==4)||(i==5 && j==5 && k==5 && l==5) 

                        ; 

                    else 

                    b=b+m1(i)*m2(j)*m3(k)*m4(l); 

                    end 

                elseif (i==3 || i==5 || i==6|| i==7) && (j==3 || j==5 || j==6|| j==7) && (k==3 || 
k==5 || k==6|| k==7) && (l==3 || l==5 || l==6|| l==7) 

                    if (i==3 && j==3 && k==3 && l==3)|| (i==5 && j==5 && k==5 && 
l==5)||(i==6 && j==6 && k==6 && l==6) 

                        ; 

                    else 

                    c=c+m1(i)*m2(j)*m3(k)*m4(l); 

                    end 

                elseif (i==4 || i==7) && (j==4 || j==7) && (k==4 || k==7) && (l==4 || l==7) 

                    d=d+m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==5 || i==7) && (j==5 || j==7) && (k==5 || k==7) && (l==5 || l==7) 

                    e=e+m1(i)*m2(j)*m3(k)*m4(l); 

                elseif (i==6 || i==7) && (j==6 || j==7) && (k==6 || k==7) && (l==6 || l==7) 



www.manaraa.com

400 
 

 
 

                    f=f+m1(i)*m2(j)*m3(k)*m4(l); 

                else 

                    pi=pi+m1(i)*m2(j)*m3(k)*m4(l); 

                end 

            end 

        end 

    end 

end 

 

bela=a; 

belb=b; 

belc=c; 

beld=d; 

bele=e; 

belf=f; 

pla=1-belb-belc-bele; 

plb=1-bela-belc-belf; 

plc=1-bela-belb-beld; 

% qtheta=pi+theta; 

BIA=[bela pla] 

BIB=[belb plb] 

BIC=[belc plc] 

Evidence set-2 in Table 4.8 is considered to run the program 

If  m1=[0.4 0.4 0 0 0 0 0.2]; %Evidence S1 

m2=[0.5 0 0.3 0 0 0 0.2]; %Evidence S2 

m3=[0.6 0.25 0 0 0 0 0.15]; %Evidence S3 

and m4=[0.7 0.2 0 0 0 0 0.1]; %Evidence S4 
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 are given then yagers4(m1,m2,m3,m4) at the command prompt gives the following 
result. The BIA, BIB, and BIC gives the belief intervals for I, II and III respectively. 

>> yagers4(m1,m2,m3,m4) 

BIA =     0.2514    0.9853 

BIB =      0.0138    0.7477 

BIC =      0.0009    0.7348 

ans =     0.2514 

The following matlab program is used to combine evidence from four sources using 
Zhang’s rule for the problem described in section 4.4 on page 96 and is needed to obtain 
optimum solution tabulated in Table 4.11.  

C.13 ZHANG’S COMBINATION RULE FOR COMBINING FOUR E1, E2, E3 and 
E4 

function [bela belb belc pla plb plc]=zhangs4(m1,m2,m3,m4) 

% clc 

% m1=[.1 .1 .1 .1 .1 .1 .4]; 

% m2=m1; 

% m3=m1; 

% m4=m1; 

sum=0; 

a=0; 

b=a; 

c=a; 

d=a; 

e=a; 

f=a; 

pi=a; 

R=zeros(7,7,7,7); 

rsum=0; 

for i=1:7 
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                if i==1 

                    x1=[1]; 

                end 

                if i==2 

                    x1=[2]; 

                end 

                if i==3 

                    x1=[3]; 

                end 

                if i==4 

                    x1=[1 2]; 

                end 

                 if i==5 

                    x1=[2 3]; 

                 end 

                 if i==6 

                    x1=[1 3]; 

                 end 

                 if i==7 

                    x1=[1 2 3]; 

                 end 

    for j=1:7 

                if j==1 

                    x2=[1]; 

                end 

                if j==2 

                    x2=[2]; 
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                end 

                if j==3 

                    x2=[3]; 

                end 

                if j==4 

                    x2=[1 2]; 

                end 

                 if j==5 

                    x2=[2 3]; 

                 end 

                 if j==6 

                    x2=[1 3]; 

                 end 

                 if j==7 

                    x2=[1 2 3]; 

                 end 

        for k=1:7 

                if k==1 

                    x3=[1]; 

                end 

                if k==2 

                    x3=[2]; 

                end 

                if k==3 

                    x3=[3]; 

                end 

                if k==4 
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                    x3=[1 2]; 

                end 

                 if k==5 

                    x3=[2 3]; 

                 end 

                 if k==6 

                    x3=[1 3]; 

                 end 

                 if k==7 

                    x3=[1 2 3]; 

                 end 

            for l=1:7                 

                if l==1 

                    x4=[1]; 

                end 

                if l==2 

                    x4=[2]; 

                end 

                if l==3 

                    x4=[3]; 

                end 

                if l==4 

                    x4=[1 2]; 

                end 

                 if l==5 

                    x4=[2 3]; 

                 end 
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                 if l==6 

                    x4=[1 3]; 

                 end 

                 if l==7 

                    x4=[1 2 3]; 

                 end 

                                   
R(i,j,k,l)=length(intersect(intersect(intersect(x1,x2),x3),x4))/(length(x1)*length(x2)*lengt
h(x3)*length(x4)); 

                rsum=rsum+R(i,j,k,l); 

                clear x4 

            end 

            clear x3 

        end 

        clear x2 

    end 

    clear x1 

end 

rsum 

for i=1:7 

    for j=1:7 

        for k=1:7 

            for l=1:7 

                sum=sum+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                if i==7 && j==7 && k==7 && l==7  

                    theta=m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                elseif (i==1 || i==7) && (j==1 || j==7) && (k==1 || k==7) && (l==1 || l==7) 

                    a=a+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 
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                elseif (i==2 || i==7) && (j==2 || j==7) && (k==2 || k==7) && (l==2 || l==7) 

                    b=b+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                elseif (i==3 || i==7) && (j==3 || j==7) && (k==3 || k==7) && (l==3 || l==7) 

                    c=c+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                elseif (i==4 || i==7) && (j==4 || j==7) && (k==4 || k==7) && (l==4 || l==7) 

                    d=d+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                elseif (i==5 || i==7) && (j==5 || j==7) && (k==5 || k==7) && (l==5 || l==7) 

                    e=e+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                elseif (i==6 || i==7) && (j==6 || j==7) && (k==6 || k==7) && (l==6 || l==7) 

                    f=f+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                elseif (i==1 || i==4 || i==6 || i==7) && (j==1 || j==4 || j==6 || j==7) && (k==1 || 
k==4 || k==6 || k==7) && (l==1 || l==4 || l==6 || l==7)  

                    if (i==1 && j==1 && k==1 && l==1)|| (i==4 && j==4 && k==4 && 
l==4)||(i==6 && j==6 && k==6 && l==6) 

                        ; 

                    else 

                    a=a+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                    end 

                elseif (i==2 || i==4 || i==5 || i==7) && (j==2 || j==4 || j==5|| j==7) && (k==2 || 
k==4 || k==5|| k==7) && (l==2 || l==4 || l==5|| l==7)  

                    if (i==2 && j==2 && k==2 && l==2)|| (i==4 && j==4 && k==4 && 
l==4)||(i==5 && j==5 && k==5 && l==5) 

                        ; 

                    else 

                    b=b+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                    end 

                elseif (i==3 || i==5 || i==6|| i==7) && (j==3 || j==5 || j==6|| j==7) && (k==3 || 
k==5 || k==6|| k==7) && (l==3 || l==5 || l==6|| l==7) 

                    if (i==3 && j==3 && k==3 && l==3)|| (i==5 && j==5 && k==5 && 
l==5)||(i==6 && j==6 && k==6 && l==6) 
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                        ; 

                    else 

                    c=c+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                    end 

                elseif (i==4 || i==7) && (j==4 || j==7) && (k==4 || k==7) && (l==4 || l==7) 

                    d=d+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                elseif (i==5 || i==7) && (j==5 || j==7) && (k==5 || k==7) && (l==5 || l==7) 

                    e=e+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                elseif (i==6 || i==7) && (j==6 || j==7) && (k==6 || k==7) && (l==6 || l==7) 

                    f=f+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                else 

                    pi=pi+m1(i)*m2(j)*m3(k)*m4(l)*R(i,j,k,l); 

                    if R(i,j,k,l)~=0 

                        [i j k l] 

                    end 

                end 

            end 

        end 

    end 

end 

 

bela=a/sum; 

belb=b/sum; 

belc=c/sum; 

beld=d/sum; 

bele=e/sum; 

belf=f/sum; 
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pla=1-belb-belc-bele; 

plb=1-bela-belc-belf; 

plc=1-bela-belb-beld; 

BIA=[bela pla] 

BIB=[belb plb] 

BIC=[belc plc] 

Evidence set-4 in Table 4.8 is considered to run the program 

If  m1=[0 0 0 0.8 0.1 0 0.1]; %Evidence S1 

m2=[0 0.5 0.1 0 0 0.2 0.2]; %Evidence S2 

m3=[0.6 0 0 0 0.2 0 0.2]; %Evidence S3 

and m4=[0.6 0.1 0 0 0.2 0 0.1]; %Evidence S4 

 are given then zhangs4(m1,m2,m3,m4) at the command prompt gives the following 
result. The BIA, BIB, and BIC gives the belief intervals for I, II and III respectively. 

>>zhangs4(m1,m2,m3,m4); 

BIA =    0.7306    0.7342 

BIB =    0.2514    0.2603 

BIC =     0.0087    0.0151 

The following matlab program is used to calculate the objective function for non-
repairable FRW policy optimization problem in section 9.3.1 on page 275 and is needed 
to obtain optimum solution tabulated in Table 7.1. It doesn’t require any input 
parameters. It should be used along with matlab program in the sections C.5 with change 
the function name to “multiobjcontautomobile”. 

C.14 OBJECTIVE FUNCTION FOR NON-REPAIRABLE FRW POLICY 
OPTIMIZATION PROBLEM 

function [out]=awcexppolicy1(in) 

format long g 

global CNT i; 

psize=size(in); 

CNT=CNT+1; 

const=0.5; 
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alpha=2; 

ck=(const*i)^alpha; 

consta=150; 

constb=10; 

fpslimit=0.4; 

%weibull distribution model is assumed for failure distribution  

%Non renewing and non repairable FRW 

 

        %brakes                 

        bc1=[110 90 80 70]; 

        b1=[.004 .006 .008 .01]; 

        pb=polyfit(b1,bc1,2); 

        wb=36;  

        wba=12; 

                   

        %exhausts  

        uc1=[125 95 85 65]; 

        u1=[.002 .007 .011 .016]; 

        pu1=polyfit(u1,uc1,2); 

        wu=36; 

        wua=12; 

        

        %hvac  

        hc1=[200 180 150]; 

        h1=[.004 .006 .009]; 

        ph1=polyfit(h1,hc1,2); 

        wh=36; 
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        wha=12; 

                

        %electrical battery 

        ebc1=[135 110 80 75]; 

        eb1=[.004 .008 .011 .012]; 

        peb1=polyfit(eb1,ebc1,2); 

        weba=12; 

        web=36; 

             

        %safety systems 

        stc1=[112 94 82 72]; 

        st1=[.004 .006 .008 .01]; 

        ps=polyfit(st1,stc1,2); 

        wst=36; 

        wsta=12; 

                 

for k1=1:psize(1,1) 

   clear x1 x2 x3 x4 x5 

        x1=in(k1,1); 

        x2=in(k1,2); 

        x3=in(k1,3); 

        x4=in(k1,4); 

        x5=in(k1,5); 

    

        twc=0; 

        fb = polyval(pb,x1);  

        wb1=fb*(1+mtforweibull((x1*wb),2)); 
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        twc=twc+2*wb1; 

        fpb=1-exp(-(x1*wb)^2); 

         

        fu1 = polyval(pu1,x2);  

        wu1=fu1*(1+mtforweibull((x2*wu),2)); 

        twc=twc+wu1; 

        fpu=1-exp(-(x2*wu)^2); 

                 

        fh1 = polyval(ph1,x3);  

        wh1=fh1*(1+mtforweibull((x3*wh),2)); 

        twc=twc+wh1; 

        fph=1-exp(-(x3*wh)^2); 

 

        feb1 = polyval(peb1,x4);  

        web1=feb1*(1+mtforweibull((x4*web),2)); 

        twc=twc+web1; 

        fpeb=1-exp(-(x4*web)^2); 

 

        fs = polyval(ps,x5);  

        wst1=fs*(1+mtforweibull((x5*wst),2)); 

        twc=twc+wst1; 

        fpst=1-exp(-(x5*wst)^2);     

 

    %failure of the automobile in series 

    tfps=1-(1-fpb)*(1-fpu)*(1-fph)*(1-fpeb)*(1-fpst); 

    gconst1=tfps-fpslimit; 

    if gconst1>0 
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      if gconst1<=1 

           gammaqx=1; 

      else 

           gconst1=gconst1+1; 

           gammaqx=2; 

      end 

      thetaqx=consta*(1-1/exp(gconst1))+constb; 

      hx=thetaqx*(gconst1)^gammaqx; 

      gconst1=gconst1+ck*hx; 

    else 

        gconst1=0; 

    end 

    gconst1 

    out(k1,1)=twc+gconst1; 

end 

The following output is obtained for the non-repairable FRW policy optimization 
problem when the following command is used at command prompt of the matlab 

 out1 = multiobjcontautomobile('awcexppolicy1',5,0.02,z) 

PSO start time at 21:51:00 

PSO: 1/800 iterations, GBest =   678.16842020125171. 

PSO: 50/800 iterations, GBest =   641.89019107138938. 

PSO: 100/800 iterations, GBest =   630.56665392052753. 

PSO: 150/800 iterations, GBest =   620.63148661739399. 

PSO: 200/800 iterations, GBest =   616.38943082507035. 

PSO: 250/800 iterations, GBest =   615.30922288733768. 

PSO: 300/800 iterations, GBest =   613.35234399898945. 

PSO: 350/800 iterations, GBest =   613.30526648825139. 

PSO: 400/800 iterations, GBest =   613.30525902532747. 
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PSO: 450/800 iterations, GBest =   613.30525902459135. 

PSO: 500/800 iterations, GBest =   613.22880792880028. 

PSO: 550/800 iterations, GBest =   613.22378263387179. 

PSO: 600/800 iterations, GBest =     613.215853376822. 

PSO: 650/800 iterations, GBest =   613.21292985033176. 

PSO: 700/800 iterations, GBest =   613.21280476885397. 

PSO: 750/800 iterations, GBest =   613.21280447210063. 

PSO: 800/800 iterations, GBest =   613.21267001185515. 

PSO end time at 21:59:46 

No. of function evaluations = 9600 

Total CPU time 284.951427 sec 

out1 =    1.0e+002 * 

 

   0.00008971382571 

   0.00005607028943 

   0.00008999999998 

   0.00012000000000 

   0.00007565099235 

   6.13212670011855 
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